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Table S1 | The hyperparameters in AggMap feature restructuring 

Stage Parameter Default Description 

Initialization 

stage 

metric correlation Distance metric to measure the similarities 

between the FPs (Eqn. 1) 

 

 

 

 

 

 

 

Fitting  

stage 

cluster_channels 5 Number of the channels / clusters of the 

feature points 

var_thr -1 Parameter to remove low-variance features. 

Feature points with variance lower than this 

threshold will be removed. 

n_epochs 500 Epochs in in minimization the differences of 

the two weighed graphs (Eqn. 11) 

lr 1.0 Learning rate in minimization the 

differences of the two weighed graphs (Eqn. 

11) 

min_dist 0.01 The minimum distance apart that points are 

allowed to be in the low dimensional 

representation (Eqn. 8) 

n_neighbors 15 K number of nearest neighbours when 

estimating the manifold structure of the 

data (Eqn. 3) 

Transformation 

stage 

scale_method ‘minmax’ Data scaling by z-score standard scaling or 

minmax scaling 

  



4 
 

 

Table S2 | The hyperparameters in AggMapNet 

Type Parameter Default Description 

 

 

Network 

Architecture 

Parameters 

(NAPs) 

conv1_kernel_size 13 The kernel size of first convolutional layers, should 

be odd number 

dense_layers [128] Number of the pyramidal dense layers and the 

units per dense layer 

dense_avf relu' Activation function in dense layers 

dropout 0 Dropout rate in the dense layers 

batch_norm FALSE Whether uses the batch normalization after 

convolution layers or not 

n_inception 2 Number of the inception layers 

 

 

 

 

 

Training-

Control 

Parameters 

(TCPs) 

epochs 200 Number of the epochs 

lr 1.00E-04 Learning rate 

batch_size 32 Batch size 

loss MSE / CE The loss function 

metric 'ACC' Evaluation metric during the training, {'ROC', 

'ACC', 'PRC'} in classification tasks, {'rmse', 'r2'} in 

regression task 

monitor 'val_loss' A monitor for early stopping, can be ''val_loss' and 

''val_metric', select the best model by the 

performance of the validation set 

patience 1000000 Number of epochs with no improvement on the 

monitor after which training will be stopped 
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Table S3 | The hyperparameters of the AggMap and AggMapNet for the different datasets  

Dataset MNIST MNIST CCTD-U TCGA-T TCGA-S  TCGA-G COV-D COV-S 

Samples (n) 70k  70k,  5 10446,  249~1134 179~554 363 41  

Features (p) 784 784 5162 10381 17970 17970 88 1486 

HPs AggMap feature restructuring 

Fmap Sizes 28 × 28 28 × 28 72 x 72 102 × 102 135 × 134 135 × 134 10 × 9 39 × 39 

Cluster channels 5 5 6 5 5 5 5 5 

HPs AggMapNet  

conv1_kernel_si

ze 

3 3 - 13 13 13 11 5 

dense_layers (128, 

64) 

(128, 

64) 

- (128) (128) (128) (128) (128) 

epochs 100 100 - 100 30~100 30~100 50 50 

lr 1e-4 1e-4 - 1e-3 1e-4 1e-4 1e-4 1e-4 

batch_size 64 64 - 64 16 16 4 1 
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Table S4 | Comparison of classification accuracy of the three feature restructuring methods (Fmaps 

are generated by Lyu-Reshape(1), Bazgir-REFINED(2), and AggMap) for each class of 33 cancers in 

the multi-task TCGA-T dataset. The average ten-fold cross-validation accuracy is reported, bold values 

indicate the better performing model. 

Tumor Type Cohort Sampl

e size 

Lyu- 

reshape 

Bazgir- 

REFINED 

AggMap 

(C=1) 

AggMap 

(C=5) 

Rectum adenocarcinoma READ 105 0.35238 0.42857 0.41905 0.46667 

Cholangiocarcinoma CHOL 45 0.55556 0.64444 0.57778 0.71111 

Esophageal carcinoma ESCA 196 0.76531 0.83163 0.82653 0.86735 

Uterine Carcinosarcoma UCS 57 0.80702 0.80702 0.82456 0.82456 

Kidney Chromophobe KICH 91 0.86813 0.79121 0.87912 0.91209 

Lung squamous cell carcinoma LUSC 552 0.90761 0.90036 0.91486 0.91848 

Cervical and endocervical cancers CESC 309 0.92880 0.90939 0.90939 0.92880 

Kidney renal papillary cell carcinoma KIRP 323 0.93189 0.89474 0.92260 0.93189 

Glioblastoma multiforme GBM 171 0.94152 0.98246 0.98246 0.98830 

Mesothelioma MESO 87 0.94253 0.95402 0.95402 0.96552 

Adrenocortical carcinoma ACC 79 0.94937 0.94937 0.97468 0.97468 

Colon adenocarcinoma COAD 328 0.94512 0.89024 0.88415 0.89634 

Kidney renal clear cell carcinoma KIRC 606 0.95215 0.95545 0.95545 0.96700 

Lung adenocarcinoma LUAD 576 0.94792 0.93750 0.93576 0.94792 

Stomach adenocarcinoma STAD 450 0.95556 0.93333 0.92889 0.95778 

Uterine Corpus Endometrial Carcinoma UCEC 201 0.95522 0.90547 0.93035 0.95522 

Bladder urothelial carcinoma BLCA 427 0.96956 0.94614 0.94379 0.95550 

Liver hepatocellular carcinoma LIHC 423 0.96927 0.96217 0.96927 0.98109 

Pancreatic adenocarcinoma PAAD 183 0.96721 0.94536 0.95628 0.97268 

Sarcoma SARC 265 0.96604 0.95094 0.98113 0.98491 

Head and Neck squamous cell carcinoma HNSC 566 0.97527 0.98763 0.99647 0.99823 

Brain Lower Grade Glioma LGG 530 0.98491 0.99434 0.99057 0.99434 

Skin Cutaneous Melanoma SKCM 473 0.97886 0.97463 0.98520 0.98309 

Breast invasive carcinoma BRCA 1212 0.99422 0.99010 0.99422 0.99587 

Ovarian serous cystadenocarcinoma OV 307 0.98697 0.99349 0.99674 0.99674 

Testicular Germ Cell Tumors TGCT 156 0.99359 0.98077 0.97436 1.00000 

Thymoma THYM 122 0.99180 0.98361 0.97541 0.98361 

Uveal Melanoma UVM 80 0.98750 0.98750 0.97500 0.97500 

Diffuse Large B-cell Lymphoma DLBC 48 1.00000 0.97917 0.97917 1.00000 

Acute Myeloid Leukemia LAML 173 1.00000 1.00000 1.00000 1.00000 

Pheochromocytoma and Paraganglioma PCPG 187 1.00000 0.98930 0.98930 0.99465 

Prostate adenocarcinoma PRAD 550 1.00000 0.99636 0.99818 1.00000 

Thyroid carcinoma THCA 568 1.00000 1.00000 0.99824 1.00000 

Total / Average 
 

10446 

/317 
0.92337 0.92051 0.92494 0.94029 
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Table S5 | AggMapNet performances versus three standard ML models on the 18 transcriptome 

benchmark datasets. The average ROC-AUCs of five-fold cross-validation are reported, the bold values 

indicate the better performing model. LGR: L2-regularized multinomial Logistic Regression, RF: Random 

Forest, kNN: k Nearest Neighbor. * values are taken from the paper of Smith et al.(2020)(3). 

 
 

Cancer  

type 

Sample  

size 

Binary 

task 

LGR* RF* kNN* AggMapNet 

(C=5) 

 

 

 

TCGA-S: 

stage 

 vs.  

stage 

COAD 505 II- vs. III+ 0.723  0.689  0.580  0.724 

KIRC 544 II- vs. III+ 0.774  0.738  0.723  0.775 

LIHC 374 I- vs. II+ 0.634  0.641  0.561  0.682 

LUAD 542 I- vs. II+ 0.629  0.649  0.590  0.656 

SKCM 249 II- vs. III+ 0.619  0.663  0.550  0.661 

STAD 416 II- vs. III+ 0.617  0.537  0.563  0.618 

THCA 513 I- vs. II+ 0.719  0.644  0.529  0.679 

UCEC 554 I- vs. II+ 0.652  0.678  0.638  0.707 

LUSC 504 I- vs. II+ 0.662  0.625  0.557  0.624 

BRCA 1134 II- vs. III+ 0.639  0.604  0.573  0.629 

 

 

TCGA-G: 

grade 

 vs.  

grade 

CESC 306 II- vs. III+ 0.633  0.656  0.610  0.668 

KIRC 544 II- vs. III+ 0.594  0.576  0.559  0.632 

LGG 532 II- vs. III+ 0.792  0.762  0.664  0.774 

LIHC 374 II- vs. III+ 0.663  0.670  0.602  0.689 

PAAD 179 II- vs. III+ 0.681  0.621  0.620  0.631 

STAD 416 II- vs. III+ 0.760  0.720  0.647  0.754 

UCEC 554 II- vs. III+ 0.895  0.878  0.815  0.903 

HNSC 504 II- vs. III+ 0.663  0.717  0.596  0.758 

Average - 486 - 0.686 0.670 0.610 0.698 
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Table S6 | AggMapNet performances versus three standard ML models combined with PCA feature 

embedding on the 18 transcriptome benchmark datasets. The average ROC-AUCs of five-fold cross-

validation are reported, the bold values indicate the better performing model. LGR: L2-regularized 

multinomial Logistic Regression, RF: Random Forest, kNN: k Nearest Neighbor. * values are taken from the 

paper of Smith et al. (2020)(3)  

 
 

Cancer  

type 

Sample  

size 

Binary 

task 

LGR * 

(PCA) 

RF* 

(PCA) 

kNN* 

(PCA) 

AggMapNet 

(C=5) 

 

 

 

TCGA-S: 

stage 

 vs.  

stage 

COAD 505 II- vs. III+ 0.660 0.697 0.582 0.724 

KIRC 544 II- vs. III+ 0.746 0.746 0.678 0.775 

LIHC 374 I- vs. II+ 0.624 0.628 0.576 0.682 

LUAD 542 I- vs. II+ 0.614 0.637 0.569 0.656 

SKCM 249 II- vs. III+ 0.615 0.674 0.544 0.661 

STAD 416 II- vs. III+ 0.562 0.601 0.551 0.618 

THCA 513 I- vs. II+ 0.630 0.652 0.536 0.679 

UCEC 554 I- vs. II+ 0.696 0.686 0.648 0.707 

LUSC 504 I- vs. II+ 0.654 0.658 0.581 0.624 

BRCA 1134 II- vs. III+ 0.620 0.592 0.536 0.629 

 

 

TCGA-G: 

grade 

 vs.  

grade 

CESC 306 II- vs. III+ 0.639 0.699 0.561 0.668 

KIRC 544 II- vs. III+ 0.580 0.594 0.577 0.632 

LGG 532 II- vs. III+ 0.730 0.767 0.692 0.774 

LIHC 374 II- vs. III+ 0.627 0.685 0.602 0.689 

PAAD 179 II- vs. III+ 0.646 0.584 0.591 0.631 

STAD 416 II- vs. III+ 0.724 0.748 0.661 0.754 

UCEC 554 II- vs. III+ 0.877 0.886 0.833 0.903 

HNSC 504 II- vs. III+ 0.677 0.726 0.602 0.758 

Average - 486 - 0.662 0.681 0.607 0.698 
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Table S7 | AggMapNet performances versus three tree-based ML models on the 18 transcriptome 

benchmark datasets. The average ROC-AUCs of five-fold cross-validation are reported, the bold values 

indicate the better performing model. RoTF: Rotation Forest, XGB: XGBoost, LGB: LightGBM. 

 
 

Cancer  

type 

Sample  

size 

Binary 

task 

RoTF XGB LGB AggMapNet  

(C=5) 

 

 

 

TCGA-S: 

stage 

 vs.  

stage 

COAD 505 II- vs. III+ 0.673  0.720  0.706  0.724 

KIRC 544 II- vs. III+ 0.725  0.789  0.794  0.775 

LIHC 374 I- vs. II+ 0.636  0.667  0.650  0.682 

LUAD 542 I- vs. II+ 0.641  0.648  0.642  0.656 

SKCM 249 II- vs. III+ 0.586  0.592  0.646  0.661 

STAD 416 II- vs. III+ 0.532  0.581  0.566  0.618 

THCA 513 I- vs. II+ 0.640  0.655  0.668  0.679 

UCEC 554 I- vs. II+ 0.637  0.666  0.661  0.707 

LUSC 504 I- vs. II+ 0.591  0.606  0.620  0.624 

BRCA 1134 II- vs. III+ 0.582  0.625  0.650  0.629 

 

 

TCGA-G: 

grade 

 vs.  

grade 

CESC 306 II- vs. III+ 0.640  0.583  0.607  0.668 

KIRC 544 II- vs. III+ 0.571  0.578  0.594  0.632 

LGG 532 II- vs. III+ 0.644  0.736  0.745  0.774 

LIHC 374 II- vs. III+ 0.671  0.651  0.677  0.689 

PAAD 179 II- vs. III+ 0.599  0.622  0.623  0.631 

STAD 416 II- vs. III+ 0.708  0.747  0.766  0.754 

UCEC 554 II- vs. III+ 0.847  0.882  0.892  0.903 

HNSC 504 II- vs. III+ 0.705  0.752  0.741  0.758 

Average - 486 - 0.642 0.670 0.680 0.698 

  

  



10 
 

Table S8 | AggMapNet performances versus three tree-based ML models combined with feature 

selection on the 18 transcriptome benchmark datasets. The average ROC-AUCs of five-fold cross-validation 

are reported, the bold values indicate the better performing model. The feature selection method is 

performed on the training set, thus the selected features in each fold is different during the cross-

validations. RoTF: Rotation Forest, XGB: XGBoost, LGB: LightGBM. 

 

 Cancer 

type 

Sample 

size 

Binary 

task 

Feature 

Selected 

RoTF XGB LGB AggMapNet 

(C=5) 

 

 

TCGA-S: 

stage 

 vs.  

stage 

COAD 505 II- vs. III+ 269~700 0.648  0.688  0.689  0.724 

KIRC 544 II- vs. III+ 2527~3919 0.689  0.766  0.787  0.775 

LIHC 374 I- vs. II+ 1040~1818 0.619  0.655  0.620  0.682 

LUAD 542 I- vs. II+ 2581~4902 0.622  0.642  0.640  0.656 

SKCM 249 II- vs. III+ 1163~1976 0.570  0.607  0.632  0.661 

STAD 416 II- vs. III+ 105~505 0.578  0.529  0.526  0.618 

THCA 513 I- vs. II+ 137~173 0.590  0.702  0.693  0.679 

UCEC 554 I- vs. II+ 2367~3644 0.633  0.671  0.682  0.707 

LUSC 504 I- vs. II+ 153~246 0.590  0.610  0.607  0.624 

BRCA 1134 II- vs. III+ 139~753 0.573  0.597  0.622  0.629 

 

 

TCGA-

G: 

grade 

 vs.  

grade 

CESC 306 II- vs. III+ 1470~2420 0.613  0.608  0.604  0.668 

KIRC 544 II- vs. III+ 173~1027 0.534  0.608  0.584  0.632 

LGG 532 II- vs. III+ 2390~3233 0.691  0.736  0.736  0.774 

LIHC 374 II- vs. III+ 1627~2854 0.630  0.653  0.699  0.689 

PAAD 179 II- vs. III+ 1740~2736 0.590  0.593  0.628  0.631 

STAD 416 II- vs. III+ 1721~5304 0.686  0.767  0.765  0.754 

UCEC 554 II- vs. III+ 5259~5521 0.791  0.881  0.890  0.903 

HNSC 504 II- vs. III+ 955~2578 0.687  0.734  0.729  0.758 

Average - 486 - - 0.630  0.669  0.674  0.698 
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Table S9 | List of the 6 AggMapNet identified important proteins of Covid-19 severity and the literature 

reports of the association of these proteins to Covid-19 severity. 

Family / Type Feature Point Protein Name Description 

Notch Q04721 Neurogenic locus 

notch homolog 

protein 2, NOTCH2 

The expression of NOTCH2 significantly 

increases the risk of COVID-19 

infection(4). 

Metalloproteinase P08253 72 kDa type IV 

collagenase, MMP2 

Although there is no direct literature to 

support, previous study suggested that 

its family member MMP9 (92 kDa type IV 

collagenase) may be an early indicator of 

respiratory failure in COVID-19 

patients(5) 

 

Selenoproteins 

P49908 Selenoprotein P, 

SELENOP 

The two markers are highly correlated to 

each other and have been reported that 

in viral infection with potential relevance 

to COVID-19(6), and SELENOP along with 

Zn and Se as composite biomarker have 

been used to predict the survival odds in 

COVID-19(7).  

P22352 Glutathione 

peroxidase 3, GPX3 

Interleukin-1 Q9NPH3 interleukin-1 receptor 

accessory protein, 

IL1RAP 

IL1RAP is a coreceptor of type 1 

interleukin 1 receptor (IL1R1) and is 

indispensable for transmission of IL-1 

signaling, early IL-1 receptor blockade in 

severe inflammatory respiratory failure 

complicating COVID-19(8). 

Superoxide 

dismutase 

P08294 Extracellular 

superoxide 

dismutase, SOD3 

There is evidence of a link between 

decreased expression of the antioxidant 

enzyme superoxide dismutase 3 (SOD3) 

in the lungs of elderly patients with 

COVID-19 and disease severity(9) 
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Supplementary Figures 

 

Fig. S1 | AggMapNet architecture with MNIST dataset as input. 

Fig. S2 | The full code for AggMap feature restructuring, AggMapNet model learning and AggMapNet 

model explanations by both Shapley-explainer and Simply-explainer. 

Fig. S3 | Various levels of additive Gaussian noise on the test set of the MNIST. 

Fig. S4 | The noisy test set generation for the four Fmaps (Org1, OrgRP1, RPAgg1 and RPAgg5). 

Fig. S5 | The noise-added Fmaps for TCGA-T dataset. 

Fig. S6 | AggMap feature restructuring results on random permutated F-MNIST data. 

Fig. S7 | AggMap fitting historical performances and final 2D embedding results on randomly permuted 

MNIST and F-MNIST. 

Fig. S8 | Robustness of AggMapNet classification performance on noise-added test set of MNIST and F-

MNIST. 

Fig. S9 | A comparison of the Fmaps of 33 cancers of the TCGA-T dataset generated by Lyu and Haque‘s 

study(1) and AggMap. 

Fig. S10 | Comparison of the Simply-explainer and Shapley-explainer on the noise-free MNIST recognition 

model explanation. 

Fig. S11 | Comparison of the Simply-explainer and Shapley-explainer on the noise MNIST recognition model 

explanation. 

Fig. S12 | Comparison of the Simply-explainer and Shapley-explainer on global explanation of breast cancer 

diagnostic model trained by WDBC dataset. 

Fig. S13 | Comparison of the predicted value on the independent cohorts for the RF and AggMapNet 

classification of the COV-S dataset. 
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Fig. S1 | AggMapNet architecture with MNIST dataset as input, the inputs are the 4-D tensor: batch size, 

height, width, channels, where the height, width and channels are 28, 28 and 5, respectively. The number 

of the trainable parameters in the model is ~0.3M.  
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Fig. S2 | The full code for AggMap feature restructuring, AggMapNet model learning and AggMapNet 

model explanations by both Shapley-explainer and Simply-explainer. 

  

  -*- coding: u -8 -*-
   
Example pipeline code for 
1) AggMap mul -channel Fmaps transforma on  
2) AggMapNet model traininng, valida on 
3) AggModel explaina ons using Shap and Simp values.
   
import pandas as pd
from sklearn.datasets import load breast cancer
from aggmap import AggMap, AggMapNet

  Data loading
data   load breast cancer()
dfx   pd.DataFrame(data.data, columns data.feature names)
dfy   pd.get dummies(pd.Series(data.target))

  AggMap ob ect de ni on,   ng, and saving
mp   AggMap(dfx, metric               )
mp. t(cluster channels 5, emb method         , verbose 0)
mp.save(        )

  AggMap visuliza ons: Hierarchical tree, embeddng sca er and grid
mp.plot tree()
mp.plot sca er()
mp.plot grid()

  Transoforma on of 1d vectors to 3D Fmaps (-1, w, h, c) by AggMap
X   mp.batch transform(dfx.values, n  obs 4, scale method           )
y   dfy.values

  AggMapNet training, valida on, early stopping, and saving
clf   AggMapNet.Mul ClassEs mator(epochs 50, gpuid 0)
clf. t(X, y, X valid None, y valid None)
clf.save model((           ))

  Model explaina on by simply-explainer: global, local
simp explainer   AggMapNet.simply explainer(clf, mp)
global simp importance   simp explainer.global explain(clf.X , clf.y )
local simp importance   simp explainer.local explain(clf.X   0  , clf.y   0  )

  Model explaina on by shapley-explainer: global, local
shap explainer   AggModel.shapley explainer(clf, mp)
global shap importance   shap explainer.global explain(clf.X )
local shap importance   shap explainer.local explain(clf.X   0  )

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
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31
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Fig. S3 | Various levels of additive Gaussian noise on the test set of the MNIST. The Gaussian noise is used 

to simulate the appearance of snow on the test set, the Gaussian noise standard deviation is from 0.12 to 

0.72. As noise characterized by a Gaussian distribution is added to examples of different images from the 

MNIST and F-MNIST dataset, the images become harder to distinguish.  

 

  



16 
 

 

Fig. S4 | The noisy test set generation for the four Fmaps (Org1, OrgRP1, RPAgg1 and RPAgg5). First the 

various levels of Gaussian noise (the standard deviation 0.00 to 0.72 with a step of 0.12) were added to the 

Org1 tests only (The Fmap values are divided by 255 to scale into 0~1), which is to generate the Org1-N set, 

then Org1-N Fmaps were further randomly permuted into OrgRP1-N using the same random seed as the 

OrgRP1 generation. After that, the OrgRP1-N Fmaps were transformed into noisy set of RPAgg1-N and 

RPAgg5-N by the pre-fit AggMap, the pre-fit AggMap transformation ability is almost not affected by the 

noise.  

 

 

Fig. S5 | The noise-added Fmaps for TCGA-T dataset. The various levels of Gaussian noise (the standard 

deviation 0.00 to 0.48 with a step of 0.08) were added, C-1 is the Fmap with 1 channel, C-5 is the Fmap with 

5 channels.  
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A  

 

 

B  

 

Fig. S6 | AggMap feature restructuring results on random permutated F-MNIST data. A, AggMap pre-fit 

with a different number of random permuted images to reconstruct the F-MINST images (RPAgg1). The all 
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(60K), 1/2, 1/5, 1/10, 1/100, and 1/1000 of the randomly permuted F-MNIST training set OrgRP1 were used 

for pre-fitting by AggMap, which was used for the reconstruction of the randomized F-MNIST test set.  B, 

the original (Org1), randomly permuted (OrgRP1), and restructured (RPAgg1 and RPAgg5) F-MNIST data. 

RPAgg5-tkb: the original images with the pixels divided into 5 groups according to the 5-channels of RPAgg5 

and colored in the same way as RPAgg5. 
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Fig. S7 | AggMap fitting historical performances and final 2D embedding results on randomly permuted 

MNIST and F-MNIST. A, the historical performance of cross-entropy (CE) loss (Eqn. 9) for randomly 

permuted MNIST and F-MNIST. B, the historical performance of PCC metric (Eqn. 10) for randomly 

permuted MNIST and F-MNIST. The dynamic process of MNIST and F-MNIST restructuring from randomly 

permuted images with 500 epochs is in Video_MNIST.mp4 and Video_F-MNIST.mp4, respectively. C, the 

final 2D embedding results for the randomly permuted MNIST FPs. D, the final 2D embedding results for 

the randomly permuted F-MNIST FPs 
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A. Robustness of AggMapNet performance on noise-added MNIST 

 

B. Robustness of AggMapNet performance on noise-added F-MNIST 

 

Fig. S8 | Robustness of AggMapNet classification performance on noise-added test set of MNIST and F-

MNIST. These models that trained on the Org1, OrgRP1, RPAgg1 and RPAgg5 Fmaps are evaluated on the 

test set with different noise levels.   
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A  

 
 
B 

 
 
C 

 
 

D 

 

Fig. S9 | A comparison of the Fmaps of 33 cancers of the TCGA-T dataset generated by Lyu and Haque‘s 

study(1) and AggMap. A, Example of direct reshaped feature maps, the images are taken from Lyu and 
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Haque‘s study(1): https://drive.google.com/file/d/1zUepIL 0is71LxPAWAZKmJ7-Kk7L9 XO/view. B, 

Example of REFINED Fmaps for the restructuring of 33 cancers of the TCGA-T dataset (102,102, 1). C, 

Example of single-channel AggMap Fmaps for the restructuring of 33 cancers of the TCGA-T dataset 

(102,102, 1). D, Example of multi-channel AggMap Fmaps for the restructuring of 33 cancers of the TCGA-

T dataset (102,102, 5) 

  

https://drive.google.com/file/d/1zUepILj0is71LxPAWAZKmJ7-Kk7L9_XO/view
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Fig. S10 | Comparison of the Simply-explainer and Shapley-explainer on the noise-free MNIST recognition 

model explanation. A, the ground truth MNIST images, and the interpretation saliency-map images that 

are generated by Simply-explainer and Shapley-explainer from ground truth images. B, the Pearson’s 

correlation coefficient (PCC) and structure similarity index (SSIM) values between the ground truth images 

and the interpreted saliency-map images for the two explainers. 
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Fig. S11 | Comparison of the Simply-explainer and Shapley-explainer on the noise MNIST recognition 

model explanation. A, the ground truth MNIST images, the noise-added images (stddev 0.36), and the 

interpretation saliency-map images that are generated by Simply-explainer and Shapley-explainer from 

noise-added images. B, the Pearson’s correlation coefficient (PCC) and structure similarity index (SSIM) 

values between the ground truth images and the interpreted saliency-map images for the two explainers. 
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Fig. S12 | Comparison of the Simply-explainer and Shapley-explainer on global explanation of breast 

cancer diagnostic model trained by WDBC dataset(10). A, the  oint scatter plot of the global feature 

importance (GFI) calculated by Simply-explainer and Shapley-explainer. B, the time used for the Simply-

explainer and Shapley-explainer in the calculation of GFI. Computational complexity for Simply-explainer is 

O(n), while the complexity for kernel Shapley-explainer is O(m*l*(2n+2048)), where l is the number of 

background samples, n is number of features and m is number of samples 
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Fig. S13 | Comparison of the predicted value on the independent cohorts for the RF and AggMapNet 

classification of the COV-S dataset. The RF prediction results are taken from Shen et al., 2020(11). The non-

severe patient XG22 had chronic hepatitis B virus (HBV) infection, diabetes, and the longest hospitalization 

(>50 days) among all non-severe patients, the 43-year-old male non-severe case XG25 was incorrectly 

classified as severe for reasons unclear(11). Compared with RF classifier, AggMapNet can predict XG22 with 

relatively lower probability to be severe, and can patient XG45 correctly although he had received 

traditional Chinese medicines for more than 20 days before admission(11). 
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