AggMapNet: Enhanced and Explainable Low-Sample Omics Deep Learning with Feature-Aggregated Multi-Channel Networks

Wan Xiang Shen^{1,2}, Yu Liu^{3,4}, Yan Chen¹, Xian Zeng⁵, Ying Tan^{1,6}, Yu Yang Jiang^{1,7*} and Yu Zong Chen^{1,7*}

¹The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China

² Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore, 117543, Singapore

³ Institute for Health Innovation & Technology, National University of Singapore, 117543, Singapore

⁴ Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 117543, Singapore

⁵ Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China

⁶ Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen, 518110, P. R. China.

⁷ Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen,
 518132 China

*Correspondence: Yu Zong Chen (<u>phacyz@nus.edu.sg</u>) Yu Yang Jiang (<u>jiangyy@sz.tsinghua.edu.cn</u>)

1

Supplementary Tables

Table S1 | The hyperparameters in AggMap feature restructuring

 Table S2 | The hyperparameters in AggMapNet

Table S3 | The hyperparameters of the AggMap and AggMapNet for the different datasets

Table S4 | Comparison of classification accuracy of the three feature restructuring methods for each

class of 33 cancers in the multi-task TCGA-T dataset.

Table S5 | AggMapNet performances versus three standard ML models on the 18 transcriptomebenchmark datasets.

 Table S6 | AggMapNet performances versus three standard ML models combined with PCA feature

 embedding on the 18 transcriptome benchmark datasets.

 Table S7 | AggMapNet performances versus three tree-based ML models on the 18 transcriptome

 benchmark datasets.

 Table S8 | AggMapNet performances versus three tree-based ML models combined with feature selection

 on the 18 transcriptome benchmark datasets.

 Table S9 | List of the 6 AggMapNet identified important proteins of Covid-19 severity and the literature

 reports of the association of these proteins to Covid-19 severity.

Stage	Parameter	Default	Description		
Initialization	metric	correlation	Distance metric to measure the similarities		
stage			between the FPs (Eqn. 1)		
	cluster_channels	5	Number of the channels / clusters of the		
			feature points		
	var_thr	-1	Parameter to remove low-variance features.		
			Feature points with variance lower than this		
			threshold will be removed.		
	n_epochs	500	Epochs in in minimization the differences of		
			the two weighed graphs (Eqn. 11)		
Fitting	lr	1.0	Learning rate in minimization the		
stage			differences of the two weighed graphs (Eqn.		
			11)		
	min_dist	0.01	The minimum distance apart that points are		
			allowed to be in the low dimensional		
			representation (Eqn. 8)		
	n_neighbors	15	K number of nearest neighbours when		
			estimating the manifold structure of the		
			data (Eqn. 3)		
Transformation	scale_method	'minmax'	Data scaling by z-score standard scaling or		
stage			minmax scaling		

Table S1 | The hyperparameters in AggMap feature restructuring

Туре	Parameter	Default	Description			
	conv1_kernel_size	13	The kernel size of first convolutional layers, should			
			be odd number			
Network	dense_layers	[128]	Number of the pyramidal dense layers and the			
Architecture			units per dense layer			
Parameters	dense_avf	relu'	Activation function in dense layers			
(NAPs)	dropout	0	Dropout rate in the dense layers			
	batch_norm	FALSE	Whether uses the batch normalization after			
			convolution layers or not			
	n_inception	2	Number of the inception layers			
	epochs	200	Number of the epochs			
	lr	1.00E-04	Learning rate			
	batch_size	32	Batch size			
	loss	MSE / CE	The loss function			
	metric	'ACC'	Evaluation metric during the training, {'ROC',			
Training-			'ACC', 'PRC'} in classification tasks, {'rmse', 'r2'} in			
Control			regression task			
Parameters	monitor	'val_loss'	A monitor for early stopping, can be "val_loss' and			
(TCPs)			"val_metric', select the best model by the			
			performance of the validation set			
	patience	1000000	Number of epochs with no improvement on the			
			monitor after which training will be stopped			

Table S2 | The hyperparameters in AggMapNet

Dataset	MNIST	MNIST	CCTD-U	TCGA-T	TCGA-S	TCGA-G	COV-D	COV-S		
Samples (n)	70k	70k,	5	10446,	249~1134	179~554	363	41		
Features (p)	784	784	5162	10381	17970	17970	88	1486		
HPs		AggMap feature restructuring								
Fmap Sizes	28 × 28	28 × 28	72 x 72	102 × 102	135 × 134	135 × 134	10 × 9	39 × 39		
Cluster channels 5		5	6	5	5	5	5	5		
HPs	AggMapNet									
conv1_kernel_si	3	3	-	13	13	13	11	5		
ze										
dense_layers	(128,	(128,	-	(128)	(128)	(128)	(128)	(128)		
	64) 64)									
epochs	100	100	-	100	30~100	30~100	50	50		
lr	1e-4	1e-4	-	1e-3	1e-4	1e-4	1e-4	1e-4		
batch_size	64	64	-	64	16	16	4	1		

Table S3 | The hyperparameters of the AggMap and AggMapNet for the different datasets

Table S4 | Comparison of classification accuracy of the three feature restructuring methods (Fmaps are generated by Lyu-Reshape(1), Bazgir-REFINED(2), and AggMap) for each class of 33 cancers in the multi-task TCGA-T dataset. The average ten-fold cross-validation accuracy is reported, bold values indicate the better performing model.

Tumor Type	Cohort	Sampl	Lyu-	Bazgir-	AggMap	AggMap
		e size	reshape	REFINED	(C=1)	(C=5)
Rectum adenocarcinoma	READ	105	0.35238	0.42857	0.41905	0.46667
Cholangiocarcinoma	CHOL	45	0.55556	0.64444	0.57778	0.71111
Esophageal carcinoma	ESCA	196	0.76531	0.83163	0.82653	0.86735
Uterine Carcinosarcoma	UCS	57	0.80702	0.80702	0.82456	0.82456
Kidney Chromophobe	KICH	91	0.86813	0.79121	0.87912	0.91209
Lung squamous cell carcinoma	LUSC	552	0.90761	0.90036	0.91486	0.91848
Cervical and endocervical cancers	CESC	309	0.92880	0.90939	0.90939	0.92880
Kidney renal papillary cell carcinoma	KIRP	323	0.93189	0.89474	0.92260	0.93189
Glioblastoma multiforme	GBM	171	0.94152	0.98246	0.98246	0.98830
Mesothelioma	MESO	87	0.94253	0.95402	0.95402	0.96552
Adrenocortical carcinoma	ACC	79	0.94937	0.94937	0.97468	0.97468
Colon adenocarcinoma	COAD	328	0.94512	0.89024	0.88415	0.89634
Kidney renal clear cell carcinoma	KIRC	606	0.95215	0.95545	0.95545	0.96700
Lung adenocarcinoma	LUAD	576	0.94792	0.93750	0.93576	0.94792
Stomach adenocarcinoma	STAD	450	0.95556	0.93333	0.92889	0.95778
Uterine Corpus Endometrial Carcinoma	UCEC	201	0.95522	0.90547	0.93035	0.95522
Bladder urothelial carcinoma	BLCA	427	0.96956	0.94614	0.94379	0.95550
Liver hepatocellular carcinoma	LIHC	423	0.96927	0.96217	0.96927	0.98109
Pancreatic adenocarcinoma	PAAD	183	0.96721	0.94536	0.95628	0.97268
Sarcoma	SARC	265	0.96604	0.95094	0.98113	0.98491
Head and Neck squamous cell carcinoma	HNSC	566	0.97527	0.98763	0.99647	0.99823
Brain Lower Grade Glioma	LGG	530	0.98491	0.99434	0.99057	0.99434
Skin Cutaneous Melanoma	SKCM	473	0.97886	0.97463	0.98520	0.98309
Breast invasive carcinoma	BRCA	1212	0.99422	0.99010	0.99422	0.99587
Ovarian serous cystadenocarcinoma	OV	307	0.98697	0.99349	0.99674	0.99674
Testicular Germ Cell Tumors	TGCT	156	0.99359	0.98077	0.97436	1.00000
Thymoma	THYM	122	0.99180	0.98361	0.97541	0.98361
Uveal Melanoma	UVM	80	0.98750	0.98750	0.97500	0.97500
Diffuse Large B-cell Lymphoma	DLBC	48	1.00000	0.97917	0.97917	1.00000
Acute Myeloid Leukemia	LAML	173	1.00000	1.00000	1.00000	1.00000
Pheochromocytoma and Paraganglioma	PCPG	187	1.00000	0.98930	0.98930	0.99465
Prostate adenocarcinoma	PRAD	550	1.00000	0.99636	0.99818	1.00000
Thyroid carcinoma	THCA	568	1.00000	1.00000	0.99824	1.00000
Total / Average		10446 /317	0.92337	0.92051	0.92494	0.94029

Table S5 | AggMapNet performances versus three standard ML models on the 18 transcriptomebenchmark datasets. The average ROC-AUCs of five-fold cross-validation are reported, the bold valuesindicate the better performing model. LGR: L2-regularized multinomial Logistic Regression, RF: RandomForest, kNN: k Nearest Neighbor. * values are taken from the paper of Smith et al.(2020)(3).

	Cancer	Sample	Binary	LGR*	RF*	kNN*	AggMapNet
	type	size	task				(C=5)
	COAD	505	II- vs. III+	0.723	0.689	0.580	0.724
	KIRC	544	ll- vs. lll+	0.774	0.738	0.723	0.775
	LIHC	374	I- vs. II+	0.634	0.641	0.561	0.682
TCGA-S:	LUAD	542	I- vs. II+	0.629	0.649	0.590	0.656
stage	SKCM	249	ll- vs. lll+	0.619	0.663	0.550	0.661
vs.	STAD	416	II- vs. III+	0.617	0.537	0.563	0.618
stage	THCA	513	l- vs. ll+	0.719	0.644	0.529	0.679
	UCEC	554	I- vs. II+	0.652	0.678	0.638	0.707
	LUSC	504	I- vs. II+	0.662	0.625	0.557	0.624
	BRCA	1134	II- vs. III+	0.639	0.604	0.573	0.629
	CESC	306	II- vs. III+	0.633	0.656	0.610	0.668
	KIRC	544	II- vs. III+	0.594	0.576	0.559	0.632
TCGA-G:	LGG	532	II- vs. III+	0.792	0.762	0.664	0.774
grade	LIHC	374	II- vs. III+	0.663	0.670	0.602	0.689
vs.	PAAD	179	II- vs. III+	0.681	0.621	0.620	0.631
grade	STAD	416	II- vs. III+	0.760	0.720	0.647	0.754
	UCEC	554	II- vs. III+	0.895	0.878	0.815	0.903
	HNSC	504	ll- vs. lll+	0.663	0.717	0.596	0.758
Average	-	486	-	0.686	0.670	0.610	0.698

Table S6 | AggMapNet performances versus three standard ML models combined with PCA feature embedding on the 18 transcriptome benchmark datasets. The average ROC-AUCs of five-fold crossvalidation are reported, the bold values indicate the better performing model. LGR: L2-regularized multinomial Logistic Regression, RF: Random Forest, kNN: k Nearest Neighbor. * values are taken from the paper of Smith et al. (2020)(3)

	Cancer	Sample	Binary	LGR *	RF*	kNN*	AggMapNet
	type	size	task	(PCA)	(PCA)	(PCA)	(C=5)
	COAD	505	II- vs. III+	0.660	0.697	0.582	0.724
	KIRC	544	II- vs. III+	0.746	0.746	0.678	0.775
	LIHC	374	I- vs. II+	0.624	0.628	0.576	0.682
TCGA-S:	LUAD	542	l- vs. ll+	0.614	0.637	0.569	0.656
stage	SKCM	249	II- vs. III+	0.615	0.674	0.544	0.661
vs.	STAD	416	II- vs. III+	0.562	0.601	0.551	0.618
stage	THCA	513	l- vs. ll+	0.630	0.652	0.536	0.679
	UCEC	554	I- vs. II+	0.696	0.686	0.648	0.707
	LUSC	504	I- vs. II+	0.654	0.658	0.581	0.624
	BRCA	1134	II- vs. III+	0.620	0.592	0.536	0.629
	CESC	306	II- vs. III+	0.639	0.699	0.561	0.668
	KIRC	544	II- vs. III+	0.580	0.594	0.577	0.632
TCGA-G:	LGG	532	II- vs. III+	0.730	0.767	0.692	0.774
grade	LIHC	374	II- vs. III+	0.627	0.685	0.602	0.689
vs.	PAAD	179	II- vs. III+	0.646	0.584	0.591	0.631
grade	STAD	416	II- vs. III+	0.724	0.748	0.661	0.754
	UCEC	554	II- vs. III+	0.877	0.886	0.833	0.903
	HNSC	504	II- vs. III+	0.677	0.726	0.602	0.758
Average	-	486	-	0.662	0.681	0.607	0.698

 Table S7 | AggMapNet performances versus three tree-based ML models on the 18 transcriptome

 benchmark datasets. The average ROC-AUCs of five-fold cross-validation are reported, the bold values

 indicate the better performing model. RoTF: Rotation Forest, XGB: XGBoost, LGB: LightGBM.

	Cancer	Sample	Binary	RoTF	XGB	LGB	AggMapNet
	type	size	task				(C=5)
	COAD	505	II- vs. III+	0.673	0.720	0.706	0.724
	KIRC	544	II- vs. III+	0.725	0.789	0.794	0.775
	LIHC	374	I- vs. II+	0.636	0.667	0.650	0.682
TCGA-S:	LUAD	542	I- vs. II+	0.641	0.648	0.642	0.656
stage	SKCM	249	II- vs. III+	0.586	0.592	0.646	0.661
vs.	STAD	416	II- vs. III+	0.532	0.581	0.566	0.618
stage	THCA	513	I- vs. II+	0.640	0.655	0.668	0.679
	UCEC	554	I- vs. II+	0.637	0.666	0.661	0.707
	LUSC	504	I- vs. II+	0.591	0.606	0.620	0.624
	BRCA	1134	II- vs. III+	0.582	0.625	0.650	0.629
	CESC	306	II- vs. III+	0.640	0.583	0.607	0.668
	KIRC	544	II- vs. III+	0.571	0.578	0.594	0.632
TCGA-G:	LGG	532	II- vs. III+	0.644	0.736	0.745	0.774
grade	LIHC	374	II- vs. III+	0.671	0.651	0.677	0.689
vs.	PAAD	179	II- vs. III+	0.599	0.622	0.623	0.631
grade	STAD	416	II- vs. III+	0.708	0.747	0.766	0.754
	UCEC	554	II- vs. III+	0.847	0.882	0.892	0.903
	HNSC	504	II- vs. III+	0.705	0.752	0.741	0.758
Average	-	486	-	0.642	0.670	0.680	0.698

Table S8 | AggMapNet performances versus three tree-based ML models combined with feature selection on the 18 transcriptome benchmark datasets. The average ROC-AUCs of five-fold cross-validation are reported, the bold values indicate the better performing model. The feature selection method is performed on the training set, thus the selected features in each fold is different during the cross-validations. RoTF: Rotation Forest, XGB: XGBoost, LGB: LightGBM.

	Cancer	Sample	Binary	Feature	RoTF	XGB	LGB	AggMapNet
	type	size	task	Selected				(C=5)
	COAD	505	ll- vs. lll+	269~700	0.648	0.688	0.689	0.724
	KIRC	544	ll- vs. lll+	2527~3919	0.689	0.766	0.787	0.775
TCGA-S:	LIHC	374	I- vs. II+	1040~1818	0.619	0.655	0.620	0.682
stage	LUAD	542	I- vs. II+	2581~4902	0.622	0.642	0.640	0.656
vs.	SKCM	249	- vs. +	1163~1976	0.570	0.607	0.632	0.661
stage	STAD	416	- vs. +	105~505	0.578	0.529	0.526	0.618
	THCA	513	I- vs. II+	137~173	0.590	0.702	0.693	0.679
	UCEC	554	I- vs. II+	2367~3644	0.633	0.671	0.682	0.707
	LUSC	504	I- vs. II+	153~246	0.590	0.610	0.607	0.624
	BRCA	1134	- vs. +	139~753	0.573	0.597	0.622	0.629
	CESC	306	ll- vs. lll+	1470~2420	0.613	0.608	0.604	0.668
	KIRC	544	ll- vs. lll+	173~1027	0.534	0.608	0.584	0.632
TCGA-	LGG	532	ll- vs. lll+	2390~3233	0.691	0.736	0.736	0.774
G:	LIHC	374	ll- vs. lll+	1627~2854	0.630	0.653	0.699	0.689
grade	PAAD	179	ll- vs. lll+	1740~2736	0.590	0.593	0.628	0.631
vs.	STAD	416	II- vs. III+	1721~5304	0.686	0.767	0.765	0.754
grade	UCEC	554	II- vs. III+	5259~5521	0.791	0.881	0.890	0.903
	HNSC	504	ll- vs. lll+	955~2578	0.687	0.734	0.729	0.758
Average	-	486	-	-	0.630	0.669	0.674	0.698

Table S9 | List of the 6 AggMapNet identified important proteins of Covid-19 severity and the literature

Family / Type	Feature Point	Protein Name	Description
Notch	Q04721	Neurogenic locus	The expression of NOTCH2 significantly
		notch homolog	increases the risk of COVID-19
		protein 2, NOTCH2	infection(4).
Metalloproteinase	P08253	72 kDa type IV	Although there is no direct literature to
		collagenase, MMP2	support, previous study suggested that
			its family member MMP9 (92 kDa type IV
			collagenase) may be an early indicator of
			respiratory failure in COVID-19
			patients(5)
	P49908	Selenoprotein P,	The two markers are highly correlated to
Selenoproteins		SELENOP	each other and have been reported that
			in viral infection with potential relevance
	P22352	Glutathione	to COVID-19(6), and SELENOP along with
		peroxidase 3, GPX3	Zn and Se as composite biomarker have
			been used to predict the survival odds in
			COVID-19(7).
Interleukin-1	Q9NPH3	interleukin-1 receptor	IL1RAP is a coreceptor of type 1
		accessory protein,	interleukin 1 receptor (IL1R1) and is
		IL1RAP	indispensable for transmission of IL-1
			signaling, early IL-1 receptor blockade in
			severe inflammatory respiratory failure
			complicating COVID-19(8).
Superoxide	P08294	Extracellular	There is evidence of a link between
dismutase		superoxide	decreased expression of the antioxidant
		dismutase, SOD3	enzyme superoxide dismutase 3 (SOD3)
			in the lungs of elderly patients with
			COVID-19 and disease severity(9)

reports of the association of these proteins to Covid-19 severity.

Supplementary Figures

Fig. S1 | AggMapNet architecture with MNIST dataset as input.

Fig. S2 | The full code for AggMap feature restructuring, AggMapNet model learning and AggMapNet

model explanations by both Shapley-explainer and Simply-explainer.

Fig. S3 | Various levels of additive Gaussian noise on the test set of the MNIST.

Fig. S4 | The noisy test set generation for the four Fmaps (Org1, OrgRP1, RPAgg1 and RPAgg5).

Fig. S5 | The noise-added Fmaps for TCGA-T dataset.

Fig. S6 | AggMap feature restructuring results on random permutated F-MNIST data.

Fig. S7 | AggMap fitting historical performances and final 2D embedding results on randomly permuted MNIST and F-MNIST.

Fig. S8 | Robustness of AggMapNet classification performance on noise-added test set of MNIST and F-MNIST.

Fig. S9 | A comparison of the Fmaps of 33 cancers of the TCGA-T dataset generated by Lyu and Haque's study(1) and AggMap.

Fig. S10 | Comparison of the Simply-explainer and Shapley-explainer on the noise-free MNIST recognition model explanation.

Fig. S11 | Comparison of the Simply-explainer and Shapley-explainer on the noise MNIST recognition model explanation.

Fig. S12 | Comparison of the Simply-explainer and Shapley-explainer on global explanation of breast cancer diagnostic model trained by WDBC dataset.

Fig. S13 | Comparison of the predicted value on the independent cohorts for the RF and AggMapNet classification of the COV-S dataset.

12

Fig. S1 | AggMapNet architecture with MNIST dataset as input, the inputs are the 4-D tensor: batch size, height, width, channels, where the height, width and channels are 28, 28 and 5, respectively. The number of the trainable parameters in the model is ~0.3M.

1 2	# -*- coding: utf-8 -*-
3	Example pipeline code for
4	1) AggMap multi-channel Fmaps transformation;
5	2) AggMapNet model traininng, validation;
6	3) AggModel explainations using Shap and Simp values.
7	
8	import pandas as pd
9	from sklearn.datasets import load_breast_cancer
10	from aggmap import AggMap, AggMapNet
11	
12	# Data loading
13	data = 10ad_breast_cancer()
14	dfy = pd. pd. dummioc(pd. Seriec(data target))
16	
17	# AggMap object definition, fitting, and saving
18	mp = AggMap(dfx, metric = 'correlation')
19	mp.fit(cluster_channels=5, emb_method = 'umap', verbose=0)
20	mp.save('agg.mp')
21	
22	# AggMap visulizations: Hierarchical tree, embeddng scatter and grid
23	mp.plot_tree()
24	mp.plot_scatter()
25	mp.plot_grid()
26	#Transaformation of 1d voctors to 2D Emans (1, w. b. c) by AgeNdan
27	# transolormation of 10 vectors to 3D rmaps (-1, w, n, c) by Aggiviap $X = mn$ batch transform(dfy values n jobs=4 scale method = 'minmay')
20	v = dfv values
30	
31	# AggMapNet training, validation, early stopping and saving
32	clf = AggMapNet.MultiClassEstimator(epochs=50, gpuid=0)
33	clf.fit(X, y, X_valid= <mark>None</mark> , y_valid= <mark>None</mark>)
34	clf.save_model((' <i>agg.model</i> '))
35	
36	# Model explaination by simply-explainer: global, local
37	simp_explainer = AggMapNet.simply_explainer(clf, mp)
38	global_simp_importance = simp_explainer.global_explain(cif.X_, cif.y_)
39	<u></u>
40 41	# Model explaination by shapleyexplainer: global local
42	shap explainer = AggModel shapley explainer(clf mp)
43	global shap importance = shap explainer.global explain(clf.X)
44	local shap importance = shap explainer.local explain(clf.X [[0]])

Fig. S2 | The full code for AggMap feature restructuring, AggMapNet model learning and AggMapNet

model explanations by both Shapley-explainer and Simply-explainer.

Fig. S3 | Various levels of additive Gaussian noise on the test set of the MNIST. The Gaussian noise is used

to simulate the appearance of snow on the test set, the Gaussian noise standard deviation is from 0.12 to

0.72. As noise characterized by a Gaussian distribution is added to examples of different images from the

MNIST and F-MNIST dataset, the images become harder to distinguish.

Fig. S4 | The noisy test set generation for the four Fmaps (Org1, OrgRP1, RPAgg1 and RPAgg5). First the various levels of Gaussian noise (the standard deviation 0.00 to 0.72 with a step of 0.12) were added to the Org1 tests only (The Fmap values are divided by 255 to scale into 0~1), which is to generate the Org1-N set, then Org1-N Fmaps were further randomly permuted into OrgRP1-N using the same random seed as the OrgRP1 generation. After that, the OrgRP1-N Fmaps were transformed into noisy set of RPAgg1-N and RPAgg5-N by the pre-fit AggMap, the pre-fit AggMap transformation ability is almost not affected by the noise.

Fig. S5 | The noise-added Fmaps for TCGA-T dataset. The various levels of Gaussian noise (the standard deviation 0.00 to 0.48 with a step of 0.08) were added, C-1 is the Fmap with 1 channel, C-5 is the Fmap with 5 channels.

В

Fig. S6 | AggMap feature restructuring results on random permutated F-MNIST data. A, AggMap pre-fit

with a different number of random permuted images to reconstruct the F-MINST images (RPAgg1). The all

(60K), 1/2, 1/5, 1/10, 1/100, and 1/1000 of the randomly permuted F-MNIST training set OrgRP1 were used for pre-fitting by AggMap, which was used for the reconstruction of the randomized F-MNIST test set. **B**, the original (Org1), randomly permuted (OrgRP1), and restructured (RPAgg1 and RPAgg5) F-MNIST data. RPAgg5-tkb: the original images with the pixels divided into 5 groups according to the 5-channels of RPAgg5 and colored in the same way as RPAgg5.

Fig. S7 | **AggMap fitting historical performances and final 2D embedding results on randomly permuted MNIST and F-MNIST. A,** the historical performance of cross-entropy (CE) loss (**Eqn. 9**) for randomly permuted MNIST and F-MNIST. **B,** the historical performance of PCC metric (**Eqn. 10**) for randomly permuted MNIST and F-MNIST. The dynamic process of MNIST and F-MNIST restructuring from randomly permuted images with 500 epochs is in **Video_MNIST.mp4** and **Video_F-MNIST.mp4**, respectively. **C,** the final 2D embedding results for the randomly permuted MNIST FPs. **D,** the final 2D embedding results for the randomly permuted F-MNIST FPs

A. Robustness of AggMapNet performance on noise-added MNIST

Fig. S8 | Robustness of AggMapNet classification performance on noise-added test set of MNIST and F-

MNIST. These models that trained on the Org1, OrgRP1, RPAgg1 and RPAgg5 Fmaps are evaluated on the test set with different noise levels.

А											
	ACC	BLCA	BRCA	CESC	CHOL	COAD	DLBC	ESCA	GBM	HNSC	KICH
	KIRC	KIRP	LAML	LGG	LIHC	LUAD	LUSC	MESO	ov	PAAD	PCPG
	PRAD	READ	SARC	SKCM	STAD	TGCT	THCA	ТНҮМ	UCEC	UCS	UVM
_											
в	ACC	BLCA	BRCA	CESC	CHOL	COAD	DLBC	ESCA	GBM	HNSC	KICH
	KIRC	KIRP	LAML	LGG	LIHC	LUAD	LUSC	MESO	OV	PAAD	PCPG
	PRAD	READ	SARC	SKCM	STAD	TGCT	THCA	ТНҮМ	UCEC	UCS	UVM
c											
L	ACC	BICA	BRCA	CESC	CHOL	COAD	DIBC	ESCA	GRM	HNSC	KICH
	KIRC	KIRP	LAML	LGG	LIHC	LUAD	LUSC	MESO	OV OV	PAAD	PCPG
	PRAD	READ	SARC	SKCM	STAD	TGCT	THCA	THYM	UCEC	UCS	UVM
_											
U	ACC	BLCA	BRCA	CESC	CHOL	COAD	DLBC	ESCA	GBM	HNSC	KICH
	KIRC	KIRP	LAML	LGG	LIHC	LUAD	LUSC	MESO	OV	PAAD	PCPG
	PRAD	READ	SARC	SKCM	STAD	TGCT	THCA	THYM	UCEC	UCS	UVM

Fig. S9 | A comparison of the Fmaps of 33 cancers of the TCGA-T dataset generated by Lyu and Haque's study(1) and AggMap. A, Example of direct reshaped feature maps, the images are taken from Lyu and

Haque's study(1): <u>https://drive.google.com/file/d/1zUepILj0is71LxPAWAZKmJ7-Kk7L9_XO/view</u>. **B**, Example of REFINED Fmaps for the restructuring of 33 cancers of the TCGA-T dataset (102,102, 1). **C**, Example of single-channel AggMap Fmaps for the restructuring of 33 cancers of the TCGA-T dataset (102,102, 1). **D**, Example of multi-channel AggMap Fmaps for the restructuring of 33 cancers of the TCGA-T dataset (102,102, 5)

Fig. S10 | Comparison of the Simply-explainer and Shapley-explainer on the noise-free MNIST recognition model explanation. A, the ground truth MNIST images, and the interpretation saliency-map images that are generated by Simply-explainer and Shapley-explainer from ground truth images. **B**, the Pearson's correlation coefficient (PCC) and structure similarity index (SSIM) values between the ground truth images and the interpreted saliency-map images for the two explainers.

Fig. S11 | Comparison of the Simply-explainer and Shapley-explainer on the noise MNIST recognition model explanation. A, the ground truth MNIST images, the noise-added images (stddev=0.36), and the interpretation saliency-map images that are generated by Simply-explainer and Shapley-explainer from noise-added images. **B**, the Pearson's correlation coefficient (PCC) and structure similarity index (SSIM) values between the ground truth images and the interpreted saliency-map images for the two explainers.

Fig. S12 | Comparison of the Simply-explainer and Shapley-explainer on global explanation of breast cancer diagnostic model trained by WDBC dataset(10). A, the joint scatter plot of the global feature importance (GFI) calculated by Simply-explainer and Shapley-explainer. B, the time used for the Simply-explainer and Shapley-explainer in the calculation of GFI. Computational complexity for Simply-explainer is O(n), while the complexity for kernel Shapley-explainer is O(m*I*(2n+2048)), where I is the number of background samples, n is number of features and m is number of samples

Fig. S13 | **Comparison of the predicted value on the independent cohorts for the RF and AggMapNet classification of the COV-S dataset.** The RF prediction results are taken from Shen et al., 2020(11). The nonsevere patient XG22 had chronic hepatitis B virus (HBV) infection, diabetes, and the longest hospitalization (>50 days) among all non-severe patients, the 43-year-old male non-severe case XG25 was incorrectly classified as severe for reasons unclear(11). Compared with RF classifier, AggMapNet can predict XG22 with relatively lower probability to be severe, and can patient XG45 correctly although he had received traditional Chinese medicines for more than 20 days before admission(11).

Reference

- Lyu, B. and Haque, A. (2018) Deep learning based tumor type classification using gene expression data.
 Proceedings of the 2018 ACM international conference on bioinformatics, computational biology, and health informatics (ACM-BCB), 89-96.
- Bazgir, O., Zhang, R., Dhruba, S.R., Rahman, R., Ghosh, S. and Pal, R. (2020) Representation of features as images with neighborhood dependencies for compatibility with convolutional neural networks. *Nat. Commun.*, **11**, 1-13.
- Smith, A.M., Walsh, J.R., Long, J., Davis, C.B., Henstock, P., Hodge, M.R., Maciejewski, M., Mu, X.J., Ra,
 S. and Zhao, S. (2020) Standard machine learning approaches outperform deep representation learning on phenotype prediction from transcriptomics data. *BMC Bioinform.*, **21**, 1-18.
- 4. Ying, K., Zhai, R., Pyrkov, T.V., Mariotti, M., Fedichev, P.O., Shen, X. and Gladyshev, V.N. (2020) Genetic and phenotypic evidence for the causal relationship between aging and covid-19. *medRxiv*.
- Ueland, T., Holter, J., Holten, A., Müller, K., Lind, A., Bekken, G., Dudmann, S., Aukrust, P., Dyrhol-Riise,
 A. and Heggelund, L. (2020) Distinct and early increase in circulating MMP-9 in COVID-19 patients with
 respiratory failure. J. Infect.
- 6. Zhang, J., Saad, R., Taylor, E.W. and Rayman, M.P. (2020) Selenium and selenoproteins in viral infection with potential relevance to COVID-19. *Redox Biol.*, 101715.
- Heller, R.A., Sun, Q., Hackler, J., Seelig, J., Seibert, L., Cherkezov, A., Minich, W.B., Seemann, P., Diegmann,
 J. and Pilz, M. (2020) Prediction of survival odds in COVID-19 by zinc, age and selenoprotein P as composite biomarker. *Redox Biol.*, **38**, 101764.
- Cauchois, R., Koubi, M., Delarbre, D., Manet, C., Carvelli, J., Blasco, V.B., Jean, R., Fouche, L., Bornet, C. and Pauly, V. (2020) Early IL-1 receptor blockade in severe inflammatory respiratory failure complicating COVID-19. *Proc. Natl. Acad. Sci. U.S.A.*, **117**, 18951-18953.
- 9. Abouhashem, A.S., Singh, K., Azzazy, H.M. and Sen, C.K. (2020) Is low alveolar type II cell SOD3 in the lungs of elderly linked to the observed severity of COVID-19? *Antioxid. Redox Signal.*, **33**, 59–65.
- Dua, D. and Graff, C. (2019) UCI machine learning repository, Wisconsin Diagnostic Breast Cancer (WDBC)
 Data Set, **37**.
- 11. Shen, B., Yi, X., Sun, Y., Bi, X., Du, J., Zhang, C., Quan, S., Zhang, F., Sun, R. and Qian, L. (2020) Proteomic and metabolomic characterization of COVID-19 patient sera. *Cell*, **182**, 59-72. e15.