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ABSTRACT

Omics-based biomedical learning frequently relies
on data of high-dimensions (up to thousands) and
low-sample sizes (dozens to hundreds), which chal-
lenges efficient deep learning (DL) algorithms, partic-
ularly for low-sample omics investigations. Here, an
unsupervised novel feature aggregation tool AggMap
was developed to Aggregate and Map omics fea-
tures into multi-channel 2D spatial-correlated image-
like feature maps (Fmaps) based on their intrin-
sic correlations. AggMap exhibits strong feature re-
construction capabilities on a randomized bench-
mark dataset, outperforming existing methods. With
AggMap multi-channel Fmaps as inputs, newly-
developed multi-channel DL AggMapNet models out-
performed the state-of-the-art machine learning mod-
els on 18 low-sample omics benchmark tasks. Ag-
gMapNet exhibited better robustness in learning
noisy data and disease classification. The AggMap-
Net explainable module Simply-explainer identified
key metabolites and proteins for COVID-19 detec-
tions and severity predictions. The unsupervised Ag-
gMap algorithm of good feature restructuring abili-
ties combined with supervised explainable AggMap-
Net architecture establish a pipeline for enhanced
learning and interpretability of low-sample omics
data.

INTRODUCTION

Biomedical investigations frequently rely on the high-
dimensional, unordered feature, low-sample size, and multi-
platform (BioHULM) data derived from omics (transcrip-
tomics, proteomics, metabolomics) (1–3) analysis. Individ-
ual investigations have primarily focused on dozens to
hundreds of samples. The derived omics data contains
hundreds-to-thousands of unordered features (in the or-
der of appearance). Although deep learning (DL) is supe-
rior in learning complex data, conventional machine learn-
ing (ML) methods are the primary tools for the recent
BioHULM-based biomedical investigations (1–3), such as
nonlinear SVM or ensemble tree-based random forest in
combination with various feature selection techniques (1,2).
There are two obstacles hindering the direct DL of Bio-
HULM data. First, DL trained by BioHULM data tends to
overfit with numerous hyperparameters (4). A comprehen-
sive study has revealed that ML models outperform deep
representation learning models trained by the same low-
sample transcriptomic data (5). Secondly, the DL outcomes
are more difficult to explain than some ML algorithms (6).
Explainability is essential in biomedical investigations (7,8),
particularly for informed decisions, mechanism investiga-
tions, biomarker discoveries, and model assessments (9,10).

High performance and explainable DL algorithms are
needed for BioHULM tasks (11). To adequately allevi-
ate the “curse of dimensionality” problem in BioHULM
learning, recent studies have focused on converting the 1D
unordered data into 2D spatially-correlated image-liked
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feature maps (Fmaps) based on genetic locations (12,13),
data neighborhoods (14) or functional relationships (15).
Although this conversion enables efficient deep learning
with convolutional neural networks (CNNs), they lack rich
channel information about the cluster groups of the input
feature points. Because multi-channel networks are help-
ful for learning complex data by separately learning feature
subsets (16), their representational richness often allows
capturing nonlinear dependencies at multiple scales (17).
The localized stationarity and compositionality of data can
be efficiently extracted by CNNs (18), the success of CNN
hinges on its ability to leverage the compositional hierar-
chies (19) and intrinsic data structures (18).

In this work, to enhance efficient CNN-based learning of
the low sample omics data, we developed a novel unsuper-
vised feature aggregation tool AggMap for aggregating and
mapping individual unordered BioHULM feature points
(FPs) into spatial-correlated multi-channel 2D Fmaps (Fig-
ure 1A). AggMap feature restructuring focuses on the spa-
tial and channel dimension of the Fmaps. With unsuper-
vised AggMap, FPs are embedded in a 2D space using the
manifold learning method Uniform Manifold Approxima-
tion and Projection (UMAP) (20) based on their pairwise
correlation distances. Meanwhile, the FPs are agglomer-
ated into multiple feature clusters (feat-clusters) using the
agglomerative hierarchical clustering method (21). FPs are
aggregated into 2D grids by linear assignment algorithm
LAPJV (22) based on the embedding coordinates to form
spatially-correlated Fmaps, and the feat-clusters guide fea-
ture assignment into split channels. The proposed AggMap
is defined as a jigsaw puzzle solver (23) because it solves jig-
saw puzzles of unordered FPs based on their intrinsic sim-
ilarities and topological structures. We also constructed a
new multi-channel CNN architecture AggMapNet (Figure
1B) with two explainable modules (Shapley-explainer and
Simply-explainer) for enhanced and explainable learning of
BioHULM from AggMap Fmaps. AggMap/AggMapNet
open-source codes are at https://github.com/shenwanxiang/
bidd-aggmap.

The feature restructuring capability of AggMap was eval-
uated by a proof-of-concept (POC) experiment on MNIST
(24). Interestingly, AggMap could almost completely recon-
struct the original images from the random permutations
based on their intrinsic correlations (Figure 1C), and the re-
construction ability of AggMap can be enhanced if it were
fitted by higher-sample size randomized data. AggMap’s
good ability to rearrange FPs improves the learning of ran-
dom data. The usefulness of AggMap for learning Bio-
HULM data was evaluated by several tests. First, AggMap
multi-channel Fmaps show notable improvements and bet-
ter robustness than single-channel Fmaps on the learning
of several datasets by AggMapNet. Secondly, AggMap out-
performs the existing 2D feature engineering methods such
as Lyu-reshape (12) and Bazgir-REFINED (14) on a multi-
task of RNA-seq based pan-cancer classification. In a cell-
cycle dataset, AggMap can pick up the stage-specific genes
easily by aggregating and grouping the FPs. Thirdly, multi-
channel AggMapNet outperformed six ML models that
are k-nearest neighbors (kNN), L2-regularized multinomial
Logistic Regression (LGR), Random Forest (RF), Rota-
tion Forest (RotF), Xgboost (XGB) and LightGBM (GBM)

in most of the 18 low-sample transcriptomic benchmark
datasets. Lastly, based on the developed Simply-explainer in
AggMapNet, we further explored the important biomark-
ers for COVID-19 detection and severity predictions. Those
identified COVID-19 relevant biomarkers are highly con-
sistent with literature-reported findings or biological mech-
anisms. These results demonstrate that the feature repre-
sentation ability in CNN models can be enhanced by un-
supervised feature aggregation and multi-channel opera-
tions in AggMap, and the developed AggMap/AggMapNet
pipeline is superior for DL of BioHULM data and key
biomarker discovery (Figure 1D).

MATERIALS AND METHODS

Motivations of AggMap feature restructuring

Humans are capable of logical restoration of broken frag-
mented objects, such as solving jigsaw puzzles or restora-
tion of cultural property as illustrated in Figure 2A. This
ability arises from pre-learned prior knowledge to connect
and combine the fragments based on their correlations and
edge connections. This knowledge is learned through var-
ious fragmentation-restoration processes. However, we are
unable to reconstruct an image with its pixels randomly per-
muted (e.g. from image “a” to image “b” in Figure 2B) de-
spite our ability to restore the image from larger fragments
(Figure 2A). This is because the original information of the
image from “b” to “a” has been lost completely. Neverthe-
less, we may restructure the image from “a” to “c” based on
the similarities of the pixels (feature points, FPs) in “a”. The
new image “c” is much more structured than image “a”, or
even with fragments very close to those of the original im-
age for various patterns such as flowers, trunks, and leaves.
The proposed AggMap was designed to Aggregate and Map
the unordered FPs into structured feature maps (Fmaps) by
imitating the assembly ability of humans (solving the jigsaw
puzzles) in a self-supervised way. This restructuring process
enables the mapping of unordered FPs into structured pat-
terns for more effective deep learning (DL).

Theoretical basis of unsupervised AggMap

To restructure the unordered FPs into structured Fmaps,
self-supervised AggMap needs a metric to measure the sim-
ilarities between the FPs, an approach to embed the FPs,
and an algorithm to assign the embedded FPs to the reg-
ular grid (i.e. the position map of the FPs). In AggMap ,
these tasks were performed by the correlation metric, the
manifold-based UMAP (20,25) approach and linear assign-
ment Jonker–Volgenant (J–V) (22) algorithm, respectively.
UMAP was initially developed for dimensionality reduc-
tion by embedding the samples in low-dimensional space. It
can effectively aggregate similar FPs while preserving their
relative proximities for both local and global data structure
(20,25), leading to SOTA performance for dimensionality
reduction in real world data (20,25). UMAP was employed
in AggMap by default for embedding FPs instead of sam-
ples into 2D space.

There are nine steps in the fitting of AggMap, as indi-
cated by a flowchart (Figure 3) using the restructuring of the
randomized MNIST FPs (pixels are randomly permuted

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/50/8/e45/6517966 by N

ational U
niversity of Singapore user on 25 July 2022

https://github.com/shenwanxiang/bidd-aggmap


PAGE 3 OF 22 Nucleic Acids Research, 2022, Vol. 50, No. 8 e45
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Figure 1. AggMap/AggMapNet pipeline and key applications. (A) Unsupervised AggMap flowchart of feature mapping and aggregation into ordered
(spatially-correlated) channel-split feature maps (Fmaps). (B) CNN-based AggMapNet architecture for Fmaps learning. The unsupervised AggMap con-
verts unordered vectors into spatially correlated multi-channel Fmaps (3D data), which are the inputs of AggMapNet. (C) proof-of-concept illustration of
AggMap restructuring of unordered data (randomized MNIST) into clustered channel-split Fmaps (reconstructed MNIST) for CNN-based learning and
important feature analysis. (D) typical biomedical application pipelines of transferable AggMap in restructuring omics data into channel-split Fmaps for
multi-channel CNN-based AggMapNet diagnosis and biomarker discovery (explanation global important features from saliency-map).
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Figure 2. Illustration of the restoring and restructuring process. (A) Restoring of the broken fragments to object with specific patterns. (B) Restructure and
restore a randomly permuted image to structured and original image, respectively.

MNIST) as an example. In Step 1, given an input tabular
data A with a shape of (M×N), where M and N are the
number of the samples and features, respectively, AggMap
measures the pairwise distance of FPs by the correlation
distance to generate the distance matrixB(N×N). AggMap
then uses the UMAP (20) algorithm to embed the FPs to
2D space in Step 3–Step 7 based on the calculated B. For
the pixel randomly permuted MNIST training data, M is
60 000 and N is 784 (28 × 28), where the N pixels are in
arbitrary order. The pairwise correlation distance is defined
by dcorr (xi , xj ):

r
(
xi , xj

) =
∑M

a=1

(
xa

i − xi )(xa
j − xj

)
√∑M

a=1

(
xa

i − xi
)2 ∑M

a=1

(
xa

j − xj

)2
(1)

dcorr
(
xi , xj

) = 1 − r
(
xi , xj

)
, i, j ∈ N; a ∈ M (2)

where r (xi , xj ) is the Pearson’s r for the given FPs of
xi and xj .

Step 2 is to conduct hierarchical clustering of the FPs
to generate clusters C based on the calculated B, where
complete linkage was used and the default number of clus-
ters is 5. This clustering operation splits the FPs into dif-
ferent groups (clusters), more clusters produce more fine-
grained separations. Each cluster is separately embedded
into an individual Fmap channel for feature group-specific
or feature-selective learning by a CNN classifier. Because
multi-channel colour images contain more information
than grayscale images, multi-channel AggMap Fmaps are
with more enriched and distinguished patterns. To visualize
the multi-channel Fmaps in AggMap tool, the FPs of each
channel were coloured in different colour, and the bright-
ness of the colour corresponds to the FP value. The optimal
number of clusters of FPs is a hyperparameter (described in
the AggMap Hyperparameters section).

Step 3 is the first phase of UMAP graph construction
(25), but different from default UMAP in building the
weighted topological k-neighbour graph using Euclidean
distance, AggMap builds the weighted graph D by exponen-
tial probability distribution using correlation distance B:

μi | j = exp
(− (

dcorr
(
xi , xj

) − ρi
)
/σi

)
, (3)

where μi | j is the weighted adjacency matrix of graph D, ρi
represents the distance from i th FP to its first nearest neigh-
bor; this ensures the local connectivity of the manifold. σi is
a (smoothed) normalization factor for the metric dcorr local
to the point xi . In UMAP Algorithm 3 (25), distance σi can
be estimated by binary search using the given hyperparam-
eter k number of nearest neighbors (i.e. n neighbors). The
adjacency matrix μi | j has to satisfy the symmetry condition
according to the UMAP algorithm (25):

μi j = μi | j + μ j |i − μi | jμ j |i (4)

The graph D is thus an undirected weighted graph whose
adjacency matrix is given by μi j , this construction provides
an appropriate fuzzy topological representation of the data
(20).

Step 4 and Step 5 are to construct a weighted graph Fin
low-dimensional space (i.e. the 2D embedding space). To
initialize the 2D coordinates of the FPs in Step 4, AggMap
uses the spectral layout to initialize the embedding E. The
randomized initialization is unsuitable for preserving global
data structure in both t-SNE and UMAP (26). Therefore,
AggMap uses the default spectral layout to initialize the em-
bedding for faster convergence and greater stability within
the algorithm (25). Specifically, AggMap utilizes the corre-
lation distance B to initialize the embedding E. To ensure a
more uniform initialization embedding, AggMap first con-
verts this distance matrix dcorr (i, j ) of B into an exponential
affinity matrix d ′

(i, j ):

d ′
(i, j ) = exp

(−dcorr (i, j )
2) (5)

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/50/8/e45/6517966 by N

ational U
niversity of Singapore user on 25 July 2022



PAGE 5 OF 22 Nucleic Acids Research, 2022, Vol. 50, No. 8 e45

Figure 3. Flowchart the of self-supervised AggMap fitting process, the dynamic process of MNIST restructuring from randomly permuted images with
500 epochs is available in Video MNIST.mp4. The Input is the M × N matrix, where M is number of the samples, and N is number of the FPs with arbitrary
order, i.e. the randomly permuted MNIST pixels across all training set of MNIST data (M = 60 000, N = 784). Step 1 to Step 9 are the steps in the fitting
stages and Step 10 is the transform stage. The Step 3 to Step 7 are the basic ideas of UMAP 2D embedding. One sample, the handwritten number “9”, is
used as a tracker to illustrate how it will be restructured. The blank dots in the object E, D, F, F’, G, H and Iare the pixels value of the number “9”. The
colors in the object G’, H’ and I’are the same five colors (clusters) as shown in object C, and the five colors stand for five clusters in hierarchical clustering
C. The outputs are the single-channel or multi-channel Fmaps.

Subsequently, the matrix d ′
(i, j ) is used for the spectral em-

bedding by the Laplacian Eigenmaps (LE) algorithm. LE
finds a low dimensional representation of the data using a
spectral decomposition of the graph Laplacian (UMAP al-
gorithm 4 (25,27)):

E(x, y) = LE Spectral Embedding
(

d ′
(i, j )

)
(6)

d(i, j ) = ‖x − y‖2, i, j ∈ N, (7)

where E(x, y) is the 2D embedding results inE, and x, y are
the coordinates for the N feature points. The pairwise Eu-
clidean distance d(i, j ) of the FPs is calculated from the 2D
coordinates in E. The weighted graph F in low-dimension
space is constructed based on d(i, j ) according to the

UMAP definition (25):

vi j =
(

1 + a ∗ d2b
(i, j )

)−1
, (8)

where vi j is the weight matrix of the low-dimensional neigh-
bour graph F, and a and b are the parameters estimated
from non-linear least-square fitting to the piecewise func-
tion with the min dist hyperparameter.

Step 6 is the graph layout optimization of F. Since there
are two weighted graph D and F, AggMap optimizes the
layout of graph F to F’ by minimizing the error between the
two topological representations D and F. The graph lay-
out for F(F’) is force-directed, the forces are derived from
gradients optimizing the edge-wise cross-entropy in for-
mula (9) between the weighted graph μ (i.e. the D) and an
equivalent weighted graph v (i.e. the F) constructed from
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low-dimension space:

CE(μ, v) =
∑
a ∈ A

(
μ (a) log

(
μ(a)
v(a)

)

+(1 − μ(a)) log
(

1 − μ (a)
1 − v (a)

))
, (9)

where CE(μ, v) is the total cross entropy loss over all the
edge existence probabilities between weighted graphs μ and
v. Minimization of CE(μ, v) will let the low dimensional
representation settle into a state that relatively accurately
represents the overall topology of the source data. During
the optimization, the similarities between the Dand F can
also be measured by metric PCC:

PCC (μvector , vvector ) = Cov (μvector , vvector )
δμvector ∗ δvvector

, (10)

where the μvector and vvector are the vector-form of the
weighted graph μ and v, respectively. Cov(μvector , vvector )
is the covariance of μvector and vvector , and the terms
δμvector and δvvector are the standard deviations of the two
weighted graphs. To minimize CE(μ, v), the derivative of
the CE(μ, v) is used to update the coordination of the low-
dimensional data points to optimize the projection space
until the convergence:

vi = vi − lr ∗ ∂CE
∂vi

, i ∈ nepochs, (11)

where lr is the learning rate, the term vi is the weight matrix
of topological graph F, and will be updated after each i th
epoch. The stochastic gradient descent (SGD) algorithm is
used due to its faster convergence and lower memory con-
sumption since we compute the gradients for a subset of the
data set. Optimized weighted graph F’ is generated upon the
convergence of the loss.

Step 7 is to generate the 2D embedding resultsG by the
graph F’ with optimized layout. Meanwhile, Step 8 groups
G into G’ by the groups defined in Step 2. Each colour
in G’ is one cluster group as shown in C. Once AggMap
has generated the G(G’), it will assign the 2D embedded
FPs into the 2D regular grid H(H’) by linear assignment
algorithm in Step 9. The J–V algorithm (22) is used for
the assignment, which preserves the 2D embedded neigh-
bourhood relationships while the FPs are assigned into the
grid points. Specifically, AggMap calculates the pairwise
squared Euclidean distance as the cost matrix (CM) be-
tween two FPs from the 2D embedding and 2D regular
mesh grid:

CM(embd, grid)(i, j ) =
(

xembd
i − xgrid

j

)2

+
(

yembd
i − ygrid

j

)2
, i, j ∈ N,

(12)

where (xembd
i , yembd

i ) is the 2D coordinates of the i th FP,
(xembd

i , yembd
i ) is the 2D coordinates of j th FP in the mesh

grid. The squared Euclidean distance matrix is the NxN size
matrix (N is the number of the FPs), which further serves as

the cost matrix (CM) to solve the linear assignment prob-
lem (LAP) by J–V algorithm. The J–V algorithm finds an
optimal solution to the global nearest neighbour assign-
ment problem by finding the set of assignments that min-
imize the total cost (i.e. the CM) of the assignments. The
regular grid H(H’) is the assignment result, in 2D grid, each
FP has an optimized location and its neighbours are the
highly correlated FPs. Based on the regular grid H(H’), the
input MxN FPs can be transformed into standard 4D ten-
sor with a shape of (M, w, h, c), where M, w, h and c are
the number of the input samples, the width, the height and
the channels of the Fmaps, respectively. The minimum value
(or zero) of FPs is used to mend the Fmaps if in the case
of w, h > N. The output of a multi-channel Fmap for one
sample is shown in I’, each channel contains one group clus-
ter in C.

AggMap is an unsupervised learning method because
no label is required during feature restructuring. AggMap
can be considered as a Fmap jigsaw puzzle solver (23) be-
cause it solves jigsaw puzzles of unordered FPs based on
their intrinsic similarities and topological structures. It can
also be regarded as a representation learning tool because
it presents a 1D vector into an image-liked 3D tensor by
self-supervised learning. It employs UMAP to restructure
unordered FPs by learning their intrinsic structures. The
proxy task is to minimize the differences between the two
weighted topological graphs built in the input data space
and embedding 2D space. Thus, AggMap can expose the
overall topology of the FPs to generate structured Fmaps
based on the intrinsic structure of FPs.

AggMap hyperparameters

AggMap is divided into three stages of initialization, fit-
ting, and transformation, which is useful for learning low-
sample labeled data because higher-sample unlabeled data
may be used for training AggMap. The intrinsic relation-
ship between FPs may be better exposed by higher-sample
data. The hyperparameters in each stage of AggMap is pro-
vided in Supplementary Table S1. In the initialization stage,
the pairwise distance matrix of FPs was typically com-
puted by the higher-sample unlabeled data (28). The fit-
ting stage controls how AggMap rearranges the FPs. The
hyperparameters in this stage are very important, which
include non-UMAP-mediated and UMAP-mediated pa-
rameters. For the non-UMAP-mediated parameters, “clus-
ter channels” is the number of clusters of the multi-channel
Fmaps (greater number of clusters leads to finer separation
of FPs), “var thr” is the threshold for filtering out lower
variance FPs (default is –1, i.e. no FPs are filtered out).
For the UMAP-mediated parameters, “n neighbors” is the
k number of nearest neighbours for estimating the mani-
fold structure of the data (Equation 3), “min dist” is the
minimum distance between two FPs that can be explicitly
separated and shown in the low dimensional representation
(Equation 8), the number of the epochs (“n epochs”) and
learning rate (“lr”) are to minimize the CE loss (Equation
9) to optimize the layout of the low-dimension graph. In the
transformation stage, the inputs are 1D vectors while the
outputs are the structured 3D tensor. The important param-
eter is the data scaling method. AggMap supports two kinds
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of data scaling methods: the “minmax” and the “standard”
scaling. In minmax scaling, the data is transformed into 0-
1 range based on the minimal and maximal value of data.
In standard scaling (also called z-score normalization), the
feature is standardized by removing the mean and scaling
to unit variance.

AggMapNet architecture, hyperparameters and training

We specifically developed a simple yet efficient CNN, Ag-
gMapNet (Figure 1B) dedicated for learning the structured
AggMap Fmaps. The multi-channel Fmaps (each in un-
stacked format of the single-channel Fmap), have two ma-
jor advantages for omics data learning. Firstly, the sepa-
ration of the FPs into several groups (channels) enables
feature group-specific or feature-selective learning. Divi-
sion of mages into multiple patches also benefits the vi-
sion transformer (ViT) model in image recognition tasks
(29). Secondly, multi-channel Fmaps provide more enriched
information and more distinguished patterns than single-
channel Fmaps. However, AggMap multi-channel Fmaps
may potentially break the local coherence and connectiv-
ity among the boundary FPs between two clusters, leading
to information loss at the boundary. To overcome this po-
tential problem, AggMapNet uses the 1 × 1 convolutional
kernel in inception layers for cross-channel learning, which
creates a projection of a stack of multi-channel Fmaps
for avoiding the information loss from local boundary-
breaking of the Fmaps.

AggMapNet consists of three parts, the input of AggMap
Fmaps, the CNN-based feature extraction layers, and pyra-
mid fully connected (FC) layers (Supplementary Figure S1).
The first convolutional layer has a larger kernel number for
increased data dimension. The max-pooling layer (kernel
size=3) has a stride size 2 for more aggressive reduction of
the spatial resolution and thus lowering the computational
cost. Choosing the right kernel size for the convolution op-
eration is difficult because different tasks may favor differ-
ent kernel sizes. For performance improvement, AggMap-
Net adopts the naı̈ve inception layer of GooLeNet (30) (a
top-performer of the ILSVRC-2014 classification task). The
inception layer in AggMapNet consists of three small par-
allel kernels (sizes of 1 × 1, 3 × 3 and 5 × 5) for enhanced
local perception. The 1 × 1 convolution is for cross-channel
learning. Subsequently, a global max-pooling (GMP) layer
is introduced before a dense layer instead of a flatten layer,
which significantly decrease the number of parameters, fol-
lowed by dense layers for improved nonlinear transforma-
tion capability. Overall, AggMapNet has a relatively small
number of trainable parameters (∼0.3 million) but has a
complex topological structure of two inception blocks.

The hyperparameters (HPs) and their default setting are
in Supplementary Table S2, which include the network
architecture parameters (NAPs) and the training-control
parameters (TCPs). The NAPs are the kernel size of the
first convolutional layer (conv1 kernel size), the number
of dense layers and corresponding units (dense layers),
dropout rate in the dense layers (dropout), number of the
inception layers (n inception), and batch normalization af-
ter convolution layers. AggMapNet uses a larger kernel size
for the first convolutional layer for enabling more expres-

sive power and a global perception (28,31). To decrease the
trainable parameter, default AggMapNet adopts 2 incep-
tion layers and 1 dense layer, and no dropout is used for the
dense layer. The TCPs include the number of epochs, learn-
ing rate (lr), and batch size. The cross-entropy loss was used
for both multi-task and binary tasks. During the training,
AggMapNet has two important parameters (the monitor
and patience) for early stopping. The monitor is the metric
performance of the validation set, and the patience param-
eter is the number of epochs with no improvement on the
monitor after which training will be stopped.

In this study, the AggMap feature restructuring object
was pre-fit by the its default parameters, but different chan-
nel setup in AggMap was explored for enhanced AggMap-
Net performance. The optimized HPs of AggMap and Ag-
gMapNet for each dataset are in Supplementary Table S3.
The model parameters were determined by the first inner
fold of the nested cross-validations and then used for all
the outer folds. The early-stopping method was used to
avoid overfitting during the nested validations. To prevent
the variability of the models of low-sample data, cross-
validations were conducted for at least 5 times by different
random seeds.

AggMapNet model interpretation and feature importance
saliency-map

Interpretability of DL and ML models is important for
informed decisions, mechanism investigations, biomarker
discoveries, and model assessments (9,10). However, it is
challenging to identify important features effectively and
reproducibly based on low-sample BioHULM data. The
perturbation-based model interpretation is an established
post hoc feature attribution method for interpreting black
box models (7,32), which interprets predictions by altering
or removing parts of input features to assess its influence
on the prediction. Kernel Shapley Additive exPlanations
(SHAP) is such kind of the model interpretation method,
which can be used for any black-box model explanation
(33). Kernel SHAP requires a background data set for train-
ing, and feature absence is simulated by substituting feature
values with prevalent values of training data. The feature
importance in kernel Shapley value is measured by com-
paring the prediction value obtained with the feature and
without it (33).

AggMapNet integrated the kernel SHAP method (i.e. the
Shapley-explainer) as one of the model explainers in Ag-
gMapNet. However, AggMapNet also complement a new
model explainer, i.e. the Simply-explainer. Kernel Shapley
method is based on a solid theoretical foundation in game
theory and is a popular explainer in local model explana-
tion by calculating the magnitude of feature attributions.
Nonetheless, it has several problems in the measurement
of feature importance (34). One problem is that it suffers
from the computational complexity in the global expla-
nation for the many samples (34). Moreover, since kernel
SHAP method considers the amount of contribution each
feature makes to the model prediction value instead of the
true value, thus it may not able to fully explore the global
relationship between the features and the true outcomes
(35). The Simply-explainer was developed for providing ad-
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ditional means for AggMapNet model explanation. The
Simply-explainer aims to be faster for calculating the global
feature importance of the high-dimensional omics features
and to consider the relationship of the features with the true
labels.

The perturbation-based interpretation method Simply-
explainer can be used for both local (individual sample)
and global (all samples of a dataset) (8) interpretation tasks.
The feature importance (FI) score S in Simply-explainer is
straightforwardly determined by replacing each FP with a
background value, without retraining the model:

Input: Trained model f , feature matrix X, target true label vector y, error
measure L(y, f ). To estimate this error L, the log loss(cross-entropy) is
used for the classification model and the mse loss is used for the
regression model:

a) Estimate the original model error eorig = L(y, f (X))
b) For each feature i = 1, . . . , k do:

Generate feature matrix Xpert by replacing feature i with the
minimal value (background value) in the data X. This breaks the
association between feature i and true outcome y.

Estimate error epert = L(y, f (Xpert)) based on the predictions of
the perturbed data.

Calculate perturbation feature importance score: Si = epert − eorig
c) Sort features by descending feature importance score S.
d) Optional corrections: applying a standard scaling or logarithm

transformation on S

The AggMapNet inputs are 4D tensor (batch size, width,
height, channels) data in multiple channels. The perturba-
tion only occurs on these meaningful FPs, and the pertur-
bation value is a background value (e.g. zero value for blank
pixel) of the input Fmaps. Noted that for the local FI, the
model error e is calculated by the log loss of the individ-
ual sample prediction values versus true labels across the
labels (classes). However, for the global FI, the model error
e is calculated by the log loss of the prediction values versus
true labels for one class by many samples. That is, in multi-
tasks, the Simply-explainer can calculate FI for each class.
The global FI based on all samples of a dataset provides
a highly compressed, global insight into the behaviours be-
tween the feature and true outcomes for the whole dataset
in Simply-explainer. In contrast, the local FI reveals the FI
that is important to individual sample (8). The correction of
the FI of Simply-explainer includes the logarithm transfor-
mation and standard scaling of the FI values to reveal the
important FPs. After scaling, those FPs with FI score Fl >
0 are considered notable FPs in a saliency-map for the pro-
posed Simply-explainer. The local or global feature impor-
tance (FI) is of a Fmap can be presented as a 2D saliency-
map for revealing the important features (Figure 1C).

In this study, the revealed important features can be pre-
sented by a saliency-map (36). The Pearson’s correlation co-
efficient (PCC) and structure similarity index (SSIM) (37)
were used to measure the performances of two explainers
on the local explanation of the same MNIST recognition
models. The PCC and SSIM were calculated based on the
original images and the explanations saliency-maps. The
full code for AggMap feature restructuring, AggMapNet
model learning, and AggMapNet model explanations with
both Shapley-explainer and Simply-explainer are in Sup-
plementary Figure S2; AggMap/AggMapNet was coded by
Python 3+, and the AggMapNet was built by TensorFlow
2.x framework.

Datasets and evaluation metrics

The datasets used in this study are listed in Table 1.
Proof-of-concept (POC) MNIST and F-MNIST bench-
mark datasets are 28x28 grayscale images, with a train-
ing and a test set of 60,000 and 10,000 image respec-
tively (24,38). An original image in MNIST or F-MNIST
is named as Org1, where “1” refers to the number of chan-
nels being 1 (the grayscale image). To randomize Org1, it
was first flattened into a vector of 684 feature points (FPs),
then shuffled with a random seed (randomly permuted), fol-
lowed by the re-folding back into a newly-shuffled 28 × 28
image, which is named as OrgRP1. AggMap restructur-
ing was conducted on the shuffled FPs. The image recon-
struction capability of AggMap was tested by the criterion
that the reconstructed image patterns is independent of how
FPs are shuffled. The reconstructed images are named as
RPAgg1 and RPAgg5 for 1-channel and 5-channel AggMap
Fmap, respectively. The structure similarity index (SSIM)
(37) for an original image and restructured image was used
to measure the feature restructuring ability of AggMap on
MINST and F-MNIST. The average accuracy was used to
measure the performances of the AggMapNet models that
were trained on the multi-task MNIST and F-MNIST.

The CCTD-U (39) dataset is a cell-cycle transcrip-
tome data of U2OS cells, consisting of the expression
levels of 5162 genes at 5 different cell cycle stages (G1,
G1/S, S, G2, M). This dataset was transformed using z-
score standard scaling. The multi-task pan-cancer tran-
scriptomic benchmark dataset TCGA-T of 33 cancers
is from normalized-level3 RNA-Seq expression studies
of normal and tumor conditions, which is compiled by
Lyu and Haque (12). TCGA-T consists of 10446 sam-
ples (45-1212 samples each cancer type, average: 317).
We used the same data and pre-processing method as
provided by these studies (https://github.com/HHHit/DL-
based-Tumor-Classification). Each sample contains 10,381
normalized gene expression read count data, which was
transformed using y = log2(x + 1) (12). For training
and testing on TCGA-T, the same stratified 10-fold cross-
validation metrics of Lyu and Haque (12) were used. The
overall average accuracy and average accuracy of each class
were calculated based on the test et performances using the
scikit-learn (40) package, where the weighted average was
used for the average performance calculation.

Two groups of low-sample binary task cancer transcrip-
tomic benchmark datasets TCGA-S and TCGA-G include
10 cancer stage and 8 cancer grade datasets, which are from
reproducible RNA-seq analysis and compiled by Smith et
al. (5). Each TCGA-S and TCGA-G consists of 249–1154,
179–554 samples; each sample contains 17 970 “O” (in GO
under the “biological process” or “molecular function” cat-
egories) genes with Z-score standardization (5). For train-
ing and testing on TCGA-S and TCGA-G, the same 5-fold
nested cross-validation ROC-AUC metrics of Smith et al.
(5) were used for rigorously assessing the out-of-sample per-
formance of the models.

Two COVID-19 proteomic/metabolomic datasets COV-
D and COV-S, are from COVID-19 detection (1) and sever-
ity determination (2) investigations, respectively. COV-D
includes 363 samples (211 Covid-positives and 151 nega-
tives by RT-PCR) from 3 labs, and each sample contains
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Table 1. Summary of the datasets in this study

Project Datatype Dataset Num. of samples Num. of features

Proof-of-
Concept

Image data MNIST (24): handwritten
digits.

70K images including 10 classes: 60K
training set, 10K test set.

28×28 grayscale images,
684 pixels.

Image data Fashion-MNIST (38):
Zalando’s article images.

70K images including 10 classes: 60K
training set, 10K test set.

28×28 grayscale images,
684 pixels.

Cell-cycle
Transcriptomics

CCTD-U (39): cell-cycle
transcriptome data of
U2OS cells

5 different phases of cell cycle (G1,
G1/S, S, G2, M) in biological
replicates

5162 RNA-seq genes
expression of U2OS cells
during cell-cycle
progression

Pan-Cancer
Transcriptomics

TCGA-T (12): The
Cancer Genome Atlas
(TCGA) of 33 cancer
types.

10446 samples, including 33 cancer
types from Pan-Cancer Atlas, the
number of samples for each class is
ranged from 45 to 1212, with an
average of 317. The sample sizes for 15
tumor types are less than 200.

10 381 normalized-level3
RNA-Seq gene expression
data.

TCGA-S (5): TCGA
cancer in different stages.

TCGA cancer stage (10 datasets),
249-554 patients in each of 9 datasets,
1,134 in 1 dataset.

17 970 “O” genes with
Z-score transformed
RNA-Seq gene expression
data.

TCGA-G (5): TCGA
cancer in different grades.

TCGA cancer grade (8 datasets),
179-554 patients in each of 8 datasets.

COVID-19 Proteomics COV-D (1): Proteomic
MALDI-MS data of
COVID-19 nasal swabs

363 samples, 211 SARS-CoV-2
positives, and 151 negatives that are
from 3 different labs.

88 nasal swabs
MALDI-MS signal peaks.

Proteomics &
Metabolomics

COV-S (2): Multi-omics
data of COVID-19 sera.

41 patients, including 31 in the
training set (18 non-severe and 13
severe) and an independent cohort of
10 patients (6 non-severe and 4
severe).

1486 markers from the
sera samples, including
649 proteins and 847
metabolites.

88 nasal swabs matrix-assisted laser desorption/ionization
mass spectrometry (MALDI-MS) signal peaks (1). To make
a fair comparison with original ML models (1), the per-
formance of AggMapNet was also evaluated by the over-
all accuracy, sensitivity, and specificity of the test fold in
4-fold cross-validation with 5 times repeat (using different
split seeds for each repeat). COV-S includes 41 COVID-19
patients, split into 31 for training (18 non-severe and 13
severe) and 10 patients for testing (6 non-severe and 4 se-
vere), the features are the 1486 integrated signatures from
the sera samples (649 proteins and 847 metabolites) ana-
lyzed by untargeted metabolomics approach using the ultra-
performance liquid chromatography/tandem mass spec-
trometry (UPLC-MS/MS) (2).

Generation of the noisy test set for MNIST/F-MNIST and
TCGA-T

The noisy test set for the four Fmaps of Org1, OrgRP1,
RPAgg1 and RPAgg5 on MNIST were generated by follow-
ing steps: First, Gaussian noises of varying levels (standard
deviation 0.00 to 0.72 with a step of 0.12) were added to the
MNIST/F-MNIST test set images (images of higher noise
levels become harder to recognize Supplementary Figure
S3), i.e. the noise was added to Org1 tests only (The Fmap
values are divided by 255 to scale into 0–1), leading to a
noise-added dataset Org1-N set, then Org1-N Fmaps were
further randomly permuted into OrgRP1-N using the same
random seed as the OrgRP1 generation. Subsequently, the
OrgRP1-N Fmaps were transformed into the noisy set of
RPAgg1-N and RPAgg5-N by the pre-fit AggMap (Supple-
mentary Figure S4). AggMapNet models trained on the
Org1, OrgRP1, RPAgg1 and RPAgg5 Fmaps were evalu-

ated on the derived noisy test Fmaps of Org1-N, OrgRP1-
N, RPAgg1-N and RPAgg5-N, respectively. On the multi-
task TCGA-T dataset, noises were added to the test set
of each fold in the 10-fold cross-validation for testing Ag-
gMapNet model performance. Specifically, various levels of
Gaussian noise (standard deviation 0.00–0.48 with a step of
0.08, Supplementary Figure S5) were added to the test set
of each fold in the TCGA-T dataset (scaled to 0–1), then
the unstructured noise-added data was transformed into 1-
channel and 5-channel noise-added but structured Fmaps
by pre-fitting AggMap.

Benchmarking of ML models and AggMapNet on 18 tran-
scriptomic benchmark datasets

We compared AggMapNet with several ML models on 18
transcriptomic datasets (10 TCGA-S and 8 TCGA-G, all bi-
nary tasks). Although Smith et al. (5) have benchmarked the
performances of three standard ML models (RF, LGR, and
kNN)) with or without feature embedding on these datasets,
more advanced and efficient tree-based ensemble ML mod-
els such as RotF (41), XGB (42), and LGB (43) have not
been evaluated. To compare AggMapNet with ML mod-
els, we also evaluated the performance of RotF, XGB and
LGB with or without subset feature selection (FS). These
18 datasets provide expression levels of 17970 genes, thus
Smith et al.(5) used PCA and deep representation meth-
ods to convert the original high dimensional data into 512
bits vectors as the inputs for the three standard ML models
of RF, LGR and kNN. In this study, we also tried the FS
method for the three tree-based ML models of RotF, XGB
and LGB to reduce the number of the features. We selected
the subset features in the training set by the median-based
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generalized absolute fold change (FC) (44) among the two
classes (binary labels) using the optimized cut-offs (for ex-
ample, at least a 0.5× fold change across any two condi-
tions). The cut-offs of FC were determined by the perfor-
mance of the nested 5-fold cross-validations. Therefore, the
number of the selected features are different in the each of
the outer fold of the five-fold cross-validations.

All these ML models were evaluated by the average
performance of the outer 5-fold cross-validation. The ex-
hausted grid-search strategy was used to find the best in the
inner 5-fold cross validation. Specifically, for each fold of
the outer folds, a nested inner 5-fold cross-validation was
used to select optimal hyperparameters, and then the op-
timal hyperparameters were used to build the model for
the outer fold. We optimized the important HPs such as
“n estimators”, “num leaves”, “max depth” for the tree-
based models by scikit-learn package the “GridSearchCV”
module (40). Nested cross validation is resistant to hyperpa-
rameter overfitting, as the model is evaluated on data com-
pletely held out from the process of selecting the optimal
hyperparameter (5).

To make fair comparisons, AggMapNet models were
evaluated by the same data split random seeds, data scal-
ing methods, and model evaluation metric as published ML
models. To make AggMapNet more user-friendly, in the
nested cross-validations, only one hyperparameter (i.e. the
number of epochs) in AggMapNet was optimized while all
other HPs of AggMap and AggMapNet were kept as de-
fault. AggMap was pre-fit by the unlabeled gene expression
data of all 18 datasets and multi-channel Fmaps were gen-
erated by the default parameters (C = 5).

RESULTS AND DISCUSSIONS

Good feature restructuring capability of AggMap

To explore the restructuring ability of AggMap in expos-
ing the unordered data, we randomly permuted the MNIST
(24) data by shuffling the orders of pixels (Figure 4A). Ran-
domly permuted MNIST represents the unordered data
with prior intrinsic patterns. We evaluated the extent to
which AggMap Fmaps reconstruct MNIST from randomly
permuted data (OrgRP1). We pre-fit AggMap using frac-
tions (full, 1/2, 1/5, 1/10, 1/100 and 1/1000) of an OrgRP1-
tr (60K randomly permuted MNIST training set) and em-
ployed it to transform the Fmaps of the OrgRP1-tr and
OrgRP1-ts (10K randomly permuted MNIST/F-MNIST
test-set). We found that AggMap can reconstruct the ran-
domly permuted MNIST data to the original data, and its
reconstruction ability depends on the sample to perform
the pre-fitting. Pre-fitting with the full MNIST OrgRP1-tr,
AggMap well-restored MNIST, down to local patches. Pre-
fitting with 1/2, 1/5 or 1/10 MNIST OrgRP1-tr, AggMap
roughly restores MNIST at an increasing level of deforma-
tion, tilt or flip when trained with decreasing fractions of
training sets (Figure 4B). Pre-fitting with 1/100 or 1/1000
F-MNIST OrgRP1-tr, AggMap cannot restore F-MNIST
but still generate distorted curve-shaped patterns (Supple-
mentary Figure S6A). Pre-fitting with the full F-MNIST
OrgRP1-tr, AggMap cannot restore the original F-MNIST
but aggregates together the original local patches (Supple-
mentary Figure S6 B).

The dynamic processes of AggMap restructuring of
the randomized MNIST and F-MNIST FPs are in
Video MNIST.mp4 and Video F-MNIST.mp4, respectively,
which showed that the restoration abilities of AggMap are
linked to the reduction of the cross-entropy loss defined in
Equation 9. With increasing number of iterations (epochs),
the generated Fmaps become more structured and eventu-
ally form stable patterns when the loss reaches convergence.
AggMap can roughly restore the randomized MNIST FPs
into original images, but not the randomized F-MNIST.
MNIST is curve-shaped data and the correlation between
FPs is not discrete but more uniformly distributed, which
conforms to the UMAP assumption of data uniform distri-
bution (25). We compared the CE loss and PCC of MNIST
with those of F-MNIST during the graph layout optimiza-
tion stage of AggMap feature restructuring (Supplemen-
tary Figure S7A). MNIST has a lower loss and higher
PCC value, indicating that the 2D embedded distribution
in MNIST more resembles the topological structure of the
original data. The final 2D embedding of MNIST FPs is
also more uniformly distributed than that of F-MNIST
FPs (Supplementary Figure S7B). Therefore, AggMap can
reconstruct randomized MNIST partly because the man-
ifold structure of the FPs is not totally changed despite
the MNIST FPs being randomly permuted, and the man-
ifold structure can be approximated by the weighted graph
in low-dimension. The randomized F-MNIST was restruc-
tured into more compact patterns with some local patches
restored to the original patches. Therefore, AggMap can
restructure randomized F-MNIST into highly structured
form even though it cannot fully restore the original image.

The split-channel operations based on the cluster groups
enable the greyscale images to be presented as multi-
channel-colored images (Figure 4C, RPAgg5, each color
represents one channel), the further tracking of these color-
ful channels into the original MNIST images showed that
they are in the same relative positions (Figure 4C, RPAgg5-
tkb), indicating that the reconstruction is able to maintain
the same local structure with original images. Thus, Ag-
gMap feature restructuring can expose the curve-shaped in-
trinsic patterns (i.e., the MNIST restructuring example) and
the local patches (i.e. the F-MNIST restructuring example)
of the packed intrinsic patterns. AggMap’s ability in expos-
ing local intrinsic patterns is largely useful for CNN-based
learning because the CNN classifier has been proved to rely
on local texture cues strongly (45).

Enhanced learning of randomized data by AggMap feature
restructuring

We evaluated to what extent does AggMap feature restruc-
turing improves AggMapNet classification of randomized
MNIST, which sheds light on the ability to learn unordered
data. AggMapNet was trained by the training set of the four
Fmaps separately (Org1, OrgRP1, RPAgg1 and RPAgg5,
Figure 4A, C), validated on their corresponding validation
set, and tested on their corresponding test set (10K). The
results show that AggMap (RPAgg1,5) transformation im-
proved MNIST classification performance of AggMapNet
from 96.7% (without AggMap, OrgRP1 Fmaps) to 99.1–
99.2%, close to the performance of the model (99.5%) that
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Figure 4. Proof-of-concept experiments on MNIST benchmark set. (A) the example of AggMap fit and transform to generate the Org1, OrgRP1,
RPAgg1 and RPAgg5 Fmaps as the inputs of AggMapNet. In the training set, the 28x28 pixels were reshaped into 684 feature points (FPs) and ran-
domly permuted into 684 unordered FPs (unordered image data). Then they were reshaped into the shuffled 28x28 images (namely the OrgRP1 images).
The random permuted images OrgRP1 have destroyed the spatial correlation of the original images (Org1) completely. The AggMap was fit on the un-
ordered image data and transformed the OrgRP1 images into RPAgg1 (channel = 1). The split-channel operations help transform the greyscale images
into multi-channel images based on the clustered groups (RPAgg5, channel = 5). (B) AggMap pre-fit with a different number of random permuted images
to reconstruct the MINST images (RPAgg1). The all (60K), 1/2, 1/5, 1/10, 1/100 and 1/1000 of the randomly permuted MNIST training set OrgRP1 were
used for pre-fitting by AggMap, which was used for the reconstruction of the randomized MNIST test set. (C) the original, randomized, and restructured
MNIST data. RPAgg5-tkb: the original images with the pixels divided into five groups according to the 5-channels of RPAgg5 and colored in the same
way as RPAgg5. (D) the historical validation accuracies of AggMapNet training on the four Fmaps. To perform the training on the four Fmaps (Org1,
OrgRP1, RPAgg1, RPAgg5), we stratified sampled 10% data from the training set (60K samples) as the validate set, leading to 54 000 training samples
and 6000 validate samples; the degree of the validation loss and accuracy is monitored during the training, and the early stopping strategy was used to
prevent from overfitting (store the model only that has the best performance on the validation set). (E) the accuracies of the final four models on the test
set with noise-free and varying degrees of noise. The performance of the model deteriorates as the noise increases (standard deviation of Gaussian white
noise from 0.0–0.72)
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was trained on the original images (Figure 4D, E). There-
fore, the AggMap feature restructuring enhanced DL of
randomized (unordered) data. The results show that the
high performance of CNNs in image-related tasks critically
lies in its architecture that takes advantage of the local or-
der of images, and AggMap is a useful tool to restructure
the unordered data into locally-ordered data.

AggMap multi-channel Fmaps and their notable contribu-
tions to the improved performance of AggMapNet

AggMap multi-channel Fmaps have an obvious advantage
over single-channel Fmaps. Visualization of AggMap multi-
channel Fmaps of the cell-cycle CCTD-U (39) dataset at dif-
ferent cell replication phases indicated that multi-channel
Fmaps can easily select stage-specific genes (Figure 5). The
stage -specific genes in the five cell-cycle phases can be eas-
ily aggregated into hot-zones in the single-channel Fmaps
based on their correlations, while the multi-channel Fmaps
further separate the phase-specific genes into different chan-
nels. Therefore, the multi-channel Fmaps facilitate group-
specific feature learning or feature selective learning by Ag-
gMapNet. By the hierarchical clustering-guided channel
splits, each cluster (group) of FPs may be separately em-
bedded into a different Fmap channel. More clusters enable
more fine-grained separations of FPs into groups. How-
ever, AggMap multi-channel Fmaps may potentially break
the local coherence and connectivity among the boundary
FPs between two clusters (e.g. Figure 4C, RPAgg5), leading
to information loss at the boundary. To overcome this po-
tential problem, AggMapNet uses the 1 × 1 convolutional
kernel in inception layers for cross-channel learning, which
creates a projection of a stack of multi-channel Fmaps
for avoiding the information loss from local boundary-
breakage of the Fmaps.

We tested the effects of channel number on the four rep-
resentative datasets of MNIST, TCGA-S COAD, TCGA-
G HNSC and COV-S (Figure 6). The performance of Ag-
gMapNet can be improved with the increasing the num-
ber of channels, because more channels generate more fine-
grained separations of the FP groups. However, if the num-
ber of channels increases to a certain extent, the perfor-
mance of the model in some dataset can be decreased. This
is because the greater number of channels in the Fmaps, the
more trainable parameters of the model, which can lead to
the overfitting problem. Overall, the multi-channel Fmaps
are helpful for CNN-based model to learn complex data by
separately learning feature subsets. Their representational
richness often allows the capturing of nonlinear dependen-
cies at multiple scales (17). Thus, multi-channel Fmaps no-
tably improve the performance of AggMapNet, where the
channel number is a hyperparameter that need be opti-
mized.

AggMap Multi-channel Fmaps enhance robustness of Ag-
gMapNet models on noisy test data

The CNN models have been proved very vulnerable to at-
tacks in the form of subtle perturbations to inputs that lead
a model to predict incorrect outputs (46,47), and although
CNNs perform better than or on par with humans on

good quality images, CNN performance is still much lower
than human performance on distorted noise images (48).
We, therefore, examined whether the AggMapNet models
trained on AggMap multi-channel Fmaps show better ro-
bustness on noisy test data. These models were trained on
the noise-free Org1, OrgRP1, RPAgg1 and RPAgg5 Fmaps
and then evaluated on the corresponding noisy test set
(Org1-N, OrgRP1-N, RPAgg1-N, RPAgg5-N, Supplemen-
tary Figure S4) with different noise levels. As the noise level
increases, the performances of all models showed varying
degrees of deterioration. Nevertheless, the models trained
by AggMap-transformed multi-channel Fmaps (RPAgg5)
in both MNIST and F-MNIST showed better robustness
to noise (Table 2, Supplementary Figure S8). For exam-
ple, on the noise level of 0.36 in the MNIST test set, the
classification accuracy of RPAgg5 can still be maintained
at 90%, but the corresponding accuracy performances for
single-channel Fmaps of Org1, OrgRP1 and RPAgg1 are
77%, 56% and 0.75% respectively. We performed the same
experiments on the multi-task pan-cancer transcriptomic
dataset TCGA-T (12), it classified the noise-added pan-
cancer transcriptomic test set with 95.1% and 13.2% ac-
curacy at zero and 0.48 noise levels, respectively (Table 2).
While after the pre-fit AggMap transforming the data into
5-channel Fmaps, it classified the noise-added pan-cancer
transcriptomic test set with 96.4% and 53.6% accuracy at
zero and 0.48 noise levels, respectively. These results demon-
strated that the multi-channels Fmaps enhanced AggMap-
Net learning of noisy/unordered data, the cluster-based
channel-split feature in AggMap transformation is crucial.

Unsupervised transferable AggMap boosts the classification
accuracy of AggMapNet

Unsupervised AggMap operates in separate fitting and
transformation stages for enabling transfer learning (Fig-
ure 7A). The fitting operation can be trained on higher-
sample data and subsequently used for transforming low-
sample data. In the fitting stage, AggMap inputs are tabu-
lar data matrix of size (n, p) to calculate the correlation dis-
tance of feature points (FPs) for performing manifold 2D
embedding and clustering, where n and p are the number of
samples and FPs, respectively. In the transformation phase,
1D unorder FPs are input to AggMap for transforming
into Fmaps, and a scaling method such as minmax or stan-
dard scaling was used for scaling the FPs. This setup is use-
ful for learning low-sample data because a larger amount
of unlabeled data could be used for fitting and generating
AggMap objects to transform low-sample 1D unordered
data into structured Fmaps. The intrinsic relationship be-
tween FPs could be more accurate if it were determined by
higher-sample data and exposed by manifold-based learn-
ing. We fit AggMap by using different numbers of MNIST
training samples (full, 1/2, 1/5, 1/10, 1/100 and 1/1000 of
60K), which showed that the AggMap Fmaps pre-fitted by
a larger dataset has a better local and global reconstruction
ability (Figure 4B). The same behavior was found on the
multi-task omics TCGA-T dataset (Figure 7B). Pre-fitting
AggMap with a very low sample subset of TCGA-T, the
generated Fmap is closer to the randomized result because
subset data alone cannot properly measure the intrinsic cor-

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/50/8/e45/6517966 by N

ational U
niversity of Singapore user on 25 July 2022



PAGE 13 OF 22 Nucleic Acids Research, 2022, Vol. 50, No. 8 e45

AggMap
C = 6

AggMap
C = 1

X

Y

Embedded scatter of 5162 genes
10

6

2

-2

-6

-10
-5 0 5 10 15

0 35 71

Regular grid of 5162 genes
0

35

71

Hierarchical tree of 5162 genes
A

B

C

D E
Cell-cycle

Stage

G1

G1 
/S

S

G2

M

F

Expression z-score

0 2-2

Expression  z-score

0 2-2

cluster_01
cluster_02
cluster_03
cluster_04
cluster_05
cluster_06

cluster_01
cluster_02
cluster_03
cluster_04
cluster_05
cluster_06
NaN

cluster_01
cluster_02
cluster_03
cluster_04
cluster_05
cluster_06

Figure 5. The performance of AggMap on the restructuring of the cell-cycle dataset of CCTD-U (39). (A) the hierarchical clustering of the 5162 genes
in AggMap (number of the clusters C = 6). (B) the 2D embedding of the 5162 genes by UMAP-mediated AggMap, the clusters are from (A). (C) the 2D
regular grid of the 5162 genes which are assigned by AggMap linear assignment algorithm. (D) the AggMap transformed multi-channel Fmaps of the
cell-cycle five stages. (E) the AggMap transformed single-channel Fmaps of the cell-cycle five stages, the hot-zone indicates the stage-specific genes, these
genes are highly expressed in a specific cell stage. (F) the five phases of cell-cycle: G1, G1/S, S, G2 and M

relation similarities of the pairwise FPs. Pre-fitting AggMap
with a larger sample size leads to more locally structured
TCGA-T Fmaps (Figure 7B) and consequently, achieve a
relatively higher classification accuracy (Figure 7C). The av-
erage 10-fold cross-validation accuracies for the five lower-
performing tasks of the multi-task TCGA-T (the five can-
cer types: READ, CHOL, UCS, KICH and ESCA) have
boosted from 44%, 62%, 79%, 84%, and 85% to 47%, 71%,
82%, 91% and 87%, respectively. Thus, the unsupervised
transferable AggMap could boost the classification accu-

racy of AggMapNet if it were pre-fitted on higher sample
unlabeled data.

Multi-channel AggMap versus existing feature restructuring
methods

We compared the DL performance of AggMap with exist-
ing 2D Fmap generation methods Lyu’s reshaping (12) and
Bazgir-REFINED (14) based on AggMapNet learning of
the TCGA-T dataset. Lyu’s reshaping method straightfor-
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Figure 6. The five-fold cross-validation average performance of AggMapNet using different number of channels on the four datasets. (A) the average
accuracy performance of the 5-fold cross-validation on multi-task MNIST dataset. (B) the average ROC-AUC performance of the 5-fold cross-validation
on binary task transcriptomic dataset of TCGA-S COAD (stage II- versus III+). (C) the average ROC–AUC performance of the five-fold cross-validation
on binary task transcriptomic dataset of TCGA-G HNSC (grade II- versus III+). (D) the average ROC–AUC performance of the five-fold cross-validation
on binary task proteomic dataset of COV-S (COVID-19 positive vs. negative). For the low-sample size datasets of TCGA-S COAD, TCGA-G HNSC and
COV-S, we repeated five rounds using different random seeds (total 25 training times), their average performances of the validation set were reported.

wardly converts 1D vector into 2D image by directly reshap-
ing the vector (12). Bazgir-REFINED method projects 1D
vector into 2D image according to their neighborhood de-
pendencies by means of the linear multidimensional scaling
(MDS) method (14). AggMap Fmaps exhibited more struc-
tured local textures than those of the two existing methods
(Figure 7A, Supplementary Figure S9). Based on the 10-
fold cross-validation performance of these Fmaps on Ag-
gMapNet learning of the TCGA-T dataset (Figure 7B), the
models of AggMap Fmaps scored lower loss values than
the two existing methods, while AggMap 5-channel Fmaps
achieved the lowest loss values. The accuracies of the Ag-
gMapNet models of these Fmaps for the 33 cancers of the
multi-task TCGA-T dataset are in Supplementary Table
S4. For all 33 cancer tasks, the use of multi-channel Ag-
gMap Fmaps substantially improved the average accuracy
over existing methods from 92% to 94%. In particular, Ag-
gMap Fmaps boosted the accuracies (ACCs) of the can-
cer classes of lower performances. For instance, the mod-
els of Lyu-reshaping (12), scored <90% ACCs for five can-
cers (CHOL, ESCA, GBM, READ and KICH). Multi-
channel AggMapNet improved the accuracies from 35% to

47%, 56% to 71%, 77% to 87%, 81% to 82% and 87% to
91%, respectively. Therefore, AggMap feature restructur-
ing method outperformed the existing methods Lyu’s re-
shaping and Bazgir-REFINED. The advantage of AggMap
arises from two reasons: Firstly, the UMAP-mediated Ag-
gMap nonlinear mapping tends to generate more structured
and local texture, while the local texture and local connec-
tivity are crucial to the accuracy and robustness of CNN
model (45). Secondly, the multi-channel Fmaps are help-
ful for CNN-based models to learn complex data by sep-
arately learning feature subsets (16), and their representa-
tional richness often allows CNN models to capture non-
linear dependencies at multiple scales (17).

Multi-channel AggMapNet versus ML models on the 18 tran-
scriptomic benchmark datasets

ML methods, combined with feature dimensionality reduc-
tion (DR) or feature selection (FS) techniques, have been
commonly used for learning BioHULM data (1,5). Ag-
gMapNet models were thus compared with six ML models
on 18 low-sample (179–554 patients) and high-dimension
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Table 2. Proof-of-concept evaluation of the contribution of AggMap feature restructuring to the robustness of AggMapNet classification of the original
and noise-added randomized data. AggMapNet was trained with noise-free training-sets and tested by noise-added test-sets with original or randomized
data as direct input or with AggMap Fmaps as input

AggMapNet classification performance

Without AggMap transform With AggMap transform

Data set

Gaussian noise
level (standard

deviation) Original: Org1

Randomly
permuted:
OrgRP1

Randomly
permuted then
restructured:

RPAgg1 (C = 1)

Randomly
permuted then
restructured:

RPAgg5 (C = 5)

MNIST test-set (noise-added) 0.00 (noise-free) 99.5% 96.7% 99.2% 99.1%
0.12 99.4% 95.4% 99.1% 99.1%
0.24 97.5% 82.5% 96.4% 97.9%
0.36 76.9% 56.0% 75.1% 90.0%
0.48 45.6% 37.5% 47.4% 67.9%
0.60 25.0% 26.0% 27.1% 42.0%
0.72 15.4% 20.4% 18.1% 26.6%

F-MNIST test-set (noise-added) 0.00 (noise-free) 92.5% 88.8% 90.7% 91.1%
0.12 83.6% 81.6% 82.8% 86.9%
0.24 58.7% 61.7% 61.2% 71.1%
0.36 32.7% 41.7% 43.4% 47.4%
0.48 19.4% 28.6% 30.2% 31.3%
0.60 14.5% 21.8% 21.1% 23.6%
0.72 12.7% 18.5% 16.0% 20.9%

TCGA-T (10-fold cross validation,
average performance)

0.00 (noise-free) 95.1% NA 95.5% 96.4%

0.08 94.0% NA 94.7% 96.0%
0.16 86.4% NA 92.1% 94.2%
0.24 62.7% NA 84.8% 89.9%
0.32 36.4% NA 71.7% 81.3%
0.40 20.9% NA 55.4% 68.4%
0.48 13.2% NA 41.3% 53.5%

(17970 genes) transcriptomic datasets. These datasets are
TCGA cancer stage (TCGA-S, 10 datasets) and grade
(TCGA-G, 8 datasets) (5). Three standard ML models RF,
LGR and kNN with or without DR (PCA or deep rep-
resentation method, which reduced the dimensionality to
512) have been developed and benchmarked by Smith et
al. (5). They found no consistent improvements of ML mod-
els with DR (5). We compared AggMapNet with these three
ML models with or without PCA. We additionally bench-
marked three efficient tree-based models of RotF, XGB
and LGB. These three models with or without FC-based
FS were also compared with AggMapNet. The compari-
son was measured by the nested five-fold cross-validation
ROC-AUC performances of AggMapNet and six ML mod-
els with or without DR or FC. AggMapNet outperformed
all six ML models with or without DR or FS (Figure 7C).
Specifically, it outperformed the three standard ML mod-
els LGR, RF and kNN on 12, 17 and 18 of the 18 bench-
mark datasets (Supplementary Table S5), and these three
ML models with PCA on 18, 15, and 18 of the 18 bench-
mark datasets (Supplementary Table S6). AggMapNet out-
performed the three tree-based ML models RotF, XGB, and
RF on 18, 18 and 15 of the 18 benchmark datasets (Supple-
mentary Table S7), and these three ML models with FS on
18, 16 and 16 of the 18 benchmark datasets (Supplementary
Table S8). AggMapNet can achieve higher performance if
a proper AggMap channels number is selected (Figure 6).
Therefore, AggMapNet coupled with AggMap is a highly
completive learning method for DL of BioHULM and
other low-sample size and high-dimension data.

Interpreting AggMapNet models by Simply-explainer and
Shapley-explainer

AggMapNet provides two perturbation-based interpreta-
tion methods for revealing important features of Ag-
gMapNet models (i. e. the Simply-explainer and Shapley-
explainer), which facilitates biomarker discovery from Bio-
HULM data. The Shapley-explainer is based on the ker-
nel SHAP values, which considers the amount of contri-
bution each FP makes to the model prediction value (33).
AggMapNet also provides a simple interpretation tool that
select important features simply by the loss changes be-
tween the outcomes and the true labels before and after each
feature alteration. We first compared the Simply-explainer
and Shapley-explainer on the local explanation of the same
MNIST recognition model. The PCC and SSIM between
the original image and the explanation saliency-map were
used for measuring the explanation performances. Simply-
explainer tends to score better explanation performance
with higher PCC and SSIM values than the Shapley-
explainer on both explanations of noise-free and noisy test
images (Supplementary Figures S10 and S11). Noticeably,
Simply-explainer focuses on the relationships between the
outcomes with the true labels instead of the changes in pre-
diction values, which might be advantageous for better ex-
planation performance.

We also compared the two explainers on the global ex-
planations of the breast cancer diagnostic model trained
on the WDBC dataset (569 samples, 30 features) (49).
The feature importance (FI) score of the two explana-
tions is highly-correlated (Persons’ r = 0.866) to each other
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Figure 7. The performances of AggMap and AggMapNet learning model on transcriptomic data TCGA-T, TCGA-S and TCGA-G. (A) the fit and
transform operations in the AggMap tool enable the Fmaps transfer learning in TCGA-T data: the pre-fit AggMap based on unlabeled high-data can be
used for low-data feature maps transformation. (B) the pre-fit sample size effects on the TCGA-T Fmaps: feature maps transformed by AggMap objects
that are pre-fitted (pre-learned) by different numbers of samples in TCGA-T dataset (The sample size of 45 is the smallest sample size of the class (the
CHOL type) in the dataset, the sample size of 317 is the average sample size among all the classes in TCGA-T dataset, the sample size of 10446 is the total
number of the samples). Using a very small sample size in TCGA-T for pre-learning (pre-fitting) in AggMap, the closer the Fmap is to the randomized
result. The larger the sample size for pre-fitting (pre-learning), the more structured TCGA-T Fmaps will be generated. (C) the pre-fit sample size effects on
learning accuracies, the average 10-fold cross-validation performances for the 5 cancer types (READ, CHOL, UCS, KICH, ESCA) on the four Fmaps that
are pre-fitted by different numbers of the samples. Larger samples to perform the pre-fitting in AggMap can achieve relatively better classification accuracy.
(D) a comparison of four Fmaps that are generated by Lyu’s reshaping (based on genetic locations) (12), Bazgir-REFINED (based on data neighbors by
MDS) (14), single-channel AggMap (C = 1) and multi-channel AggMap (C = 5) on the five lower-performing cancer tasks of the TCGA-T dataset. (E) the
ten-fold cross-validation average loss performances of AggMapNet models trained on the four different Fmaps. (F) the nested five-fold cross-validation
average ROC-AUC performance of AggMapNet versus the six ML models LGR, kNN, RF, RotF, XGB and LGB (with or without PCA embedding and
feature selection) on the 10 TCGA-S (cancer stage) and 8 TCGA-G (cancer grade) datasets. The performance of three ML models of LGR, kNN and RF
with or without PCA dimensionality reduction were benchmarked by xx. The three ML models of RotF, XGB and LGB with or without absolute fold
change (FC) based feature selection were evaluated by this paper. LGR: L2-regularized multinomial Logistic Regression, RF: Random Forest, kNN: k
Nearest Neighbor, RotF: Rotation Forest, XGB: Xgboost, LGB: Lightgbm, PCA: principal component analysis, FS: feature selection.
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(Supplementary Figure S12A). However, the FI scores in
Simply-explainer tends to be more discrete than Shapley-
explainer, suggesting that Simply-explainer can be a com-
petitive method for biomarker identifications. The compu-
tational complexity for the Simply-explainer is O(n), which
is much faster than the kernel Shapley-explainer (The com-
plexity in kernel Shapley-explainer is O(m*l*(2n + 2048)),
where l is the number of background samples, n is number of
features and m is number of samples (33)) (Supplementary
Figure S12B). These results indicate that Simply-explainer
is robust, highly discriminative and fast for the selection of
important features, even with noisy data, which is partic-
ularly suitable for discovering the key biomarkers in Bio-
HULM data.

Applications of multi-channel AggMapNet in the COVID-19
detection on mass spectrometry data

We further tested AggMapNet on COVID-19 detections
from a real-world spectra data of proteome COV-D. COV-
D has been derived from the nasal swabs of 363 COVID-
19 patients/controls using clinically-available MALDI-MS
equipment (1). MALDI-MS assays exploit reference spec-
tra for disease diagnosis through proteomic profiling. Six
MLs and two feature selection methods have been exploited
in previous study (1) for COVID-19 diagnosis and spectra
marker identification, where Support Vector Machines with
a Radial kernel (SVM-R) achieved SOTA performance in
the detections, the average accuracy by the nested 4-fold
cross-validation (4-FCV) with optimized SVM-R is 93.9%
(1), however AggMapNet with multi-channel Fmaps inputs
has achieved 94.5% detection accuracy based on the same
data split method and evaluation metric (Figure 8C). By
converting 1D spectral data into 2D multi-channel Fmaps,
AggMap boosted the detection accuracy, because multi-
channel Fmaps are easier to distinguish the positive cases
from controls (Figure 8A), and their representational rich-
ness allows the capturing of nonlinear dependencies at mul-
tiple scales, thus have improved the detection accuracies no-
tably compared with single-channel Fmaps (Figure 8B).

Examination of AggMapNet-revealed important fea-
tures showed that, the global feature importance (FI) scores
calculated by Simply-explainer for COV-D peaks in differ-
ent folds of 4-FCV are highly correlated (the pairwise fold
Pearson’s r = 0.71–0.91) (Figure 8D). Notably, 7 of the top-
10 and 18 of the top-30 important peaks are among the
39 statistically significant (p<0.05) COVID-19-correlated
peaks of the previous MALDI-MS study (1) (Figure 8D,
E), where the most correlated peak (p-7612) of that study
ranked fifth by AggMapNet. Moreover, the first ranked
peak p-7654 by AggMapNet is highly correlated with p-
7612, the relative average intensities of both p-7612 and p-
7654 for the COVID-19 positives are lower than the healthy
controls (Figure 8F).

Applications of AggMapNet in the severity prediction and
key biomarkers identification of COVID-19 on low-sample
size multi-omics data

AggMapNet was also applied to classify the severe and non-
severe COVID-19 patients and identify key proteomic and

metabolomic biomarkers. The sera multi-omics (proteomic
and metabolomic) dataset of COV-S with 49 COVID-
19 patients has been used for ML-facilitated determina-
tion of COVID-19 severity and sera protein/metabolite
changes(potential biomarkers) (2). The random forest (RF)
model scored 70% accuracy in classifying the severe cases
from non-severe cases in the independent test cohort in
COV-S (2), while AggMapNet with multi-channel Fmaps
(Figure 9A, B) inputs can improve the accuracy to 80%.
A non-severe patient XG45 misclassified by RF but cor-
rectly classified by AggMapNet reportedly received tradi-
tional Chinese medicines for >20 days before admission (2).
The 43-year-old male non-severe case XG25 was incorrectly
classified as severe by both RF and AggMapNet model for
reasons unclear, another non-severe patient XG22 misclas-
sified by both RF and AggMapNet had chronic hepatitis B
virus infection, diabetes, and long hospitalization (2) (Sup-
plementary Figure S13).

We analyzed the global feature importance (GFI) on Ag-
gMapNet severity prediction model, the top-50 important
FPs including 39 metabolites and 11 proteins, are clustered
into six major groups (G1–G6) by 2D embedding of UMAP
(Figure 9C). Few of the 39 metabolites and 11 proteins are
among the important signatures of the previous study (2),
partly because of high variations of merely 41 samples. G1–
G5 are the metabolites (except for the Q9NPH3 in G2),
and G6 is the proteins (except for the Genistein sulfate).
Metabolites in G1 are the sphingomyelins (SMs), G2 are
the phospholipid metabolites, G3 are the derivates of amino
acids such as tryptophan and thyroxine, G4 and G5 are ma-
jor the amino acids and their metabolites.

AggMapNet-selected important metabolites sphin-
gomyelins, phospholipids and ergothioneine (Figure 9D)
are consistent with literature reports. Sphingomyelins
(SMs) in group G1 show the most important contributes
to the model (Ranks 1 and 3 in top-10). Plasma SMs have
been proved that is a useful biomarker for distinguishing
between COVID-19 patients and healthy subjects (50), and
more importantly, the serum level of the metabolites of
SMs, sphingosine-1-phosphate (S1P), have been reported
as a novel circulating biomarker negatively associated
with COVID-19 severity and morbidity (51). Those phos-
pholipid metabolites in G2 group including glycerophos-
phatidylcholines (GPCs), glycerophosphatidylinositols
(GPIs), glycerophosphatidylethanolamines (GPEs) are
also reported as important phospholipidome signatures
for Ebola virus disease (EVD) fatal outcomes (52) and
associated with severity of COVID-19 (50). Other most
important biomarker is ergothioneine in G5, which ranked
2 among all the FPs. It can modulate inflammation and has
been proposed as a therapeutic to reduce the severity and
mortality of COVID-19, especially in the elderly and those
with underlying health conditions (53).

Among the 11 AggMapNet-selected important proteins
(Figure 9E), three proteins (Immunoglobulin kappa 1D-
13 and 2D-30, Semaphorin-4B) are immune-related (54),
1 protein (Vasorin) modulates arterial response to in-
jury (55) and six proteins (NOTCH2, MMP2, SELENOP,
GPX3, IL1RAP and SOD3) are related to COVID-19
severity (Supplementary Table S9). Overall, AggMapNet
has achieved SOTA performances in COVID-19 detec-
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Rank Feature point FI p-value
1 sphingomyelin (d18:2/23:0) 4.922 0.149
2 ergothioneine 4.562 0.040
3 sphingomyelin (d18:1/20:1) 4.475 0.741
4 thyroxine 4.230 0.004
5 N-acetyltryptophan 4.088 0.569
6 1-carboxyethylleucine 3.861 0.022

7
1-(1-enyl-stearoyl)-2-

arachidonoyl-GPE 3.845 0.008

8
1-(1-enyl-stearoyl)-2-

linoleoyl-GPE 3.792 0.010
9 1-arachidonoyl-GPC 3.718 0.721

10 Q6EMK4 3.519 0.569

D

Feature point Name Protein Full Name FI Rank p-value
Q6EMK4 VASN Vasorin 3.519 10 0.569
Q04721 NOTCH2 Neurogenic locus notch homolog protein 2 3.271 14 0.579
Q8IXL6 FAM20C Extracellular serine/threonine protein kinase FAM20C 3.150 20 0.236

A0A0B4J2D9 IGKV1D-13 Immunoglobulin kappa variable 1D-13 2.860 29 0.643
P08253 MMP2 72 kDa type IV collagenase 2.716 32 0.606
P22352 GPX3 Glutathione peroxidase 3 2.547 38 0.090

Q9NPH3 IL1RAP Interleukin-1 receptor accessory protein 2.471 41 0.209
P49908 SELENOP Selenoprotein P 2.456 43 0.483

A0A075B6S6 IGKV2D-30 Immunoglobulin kappa variable 2D-30 2.417 44 0.447
P08294 SOD3 Extracellular superoxide dismutase [Cu-Zn] 2.358 45 0.432

Q9NPR2 SEMA4B Semaphorin-4B 2.325 46 0.643

E

cluster_03 
cluster_04 
cluster_05

Metabolites:

Proteins:

cluster_01
cluster_02

NaN

0
5

10
15
20
25
30
35

0 5 10 15 20 25 30 35

4

3

2

1

0

-1

Importance Score

Metabolites: 39
Proteins: 11

Type

UMAP1

2P
A

M
U

Sphingomyelin (d17:1/16:0, d18:1/15:0, d16:1/17:0)*
Sphingomyelin (d18:1/20:1, d18:2/20:0)*
Sphingomyelin (d18:2/14:0, d18:1/14:1)*
Sphingomyelin (d18:1/17:0, d17:1/18:0, d19:1/16:0)
Sphingomyelin (d18:2/23:0, d18:1/23:1, d17:1/24:1)*

Inosine
Ergothioneine
2-isopropylmalate
Tigloylglycine
N-acetyltryptophan
5,6-dihydrouracil
N-acetylphenylalanine
1-carboxyethylleucine
N-acetylvaline

2-pyrrolidinone
Arginine
N-acetylasparagine
2'-O-methylcytidine
Prolylglycine
4-ethylphenyl sulfate
Stearoylcholine
Glycerol 3-phosphate

Q9NP
H3

Q6EMK4
Q04721 Q8IXL6

P08253

Q9NPR2
A0A075B6S6

A0A0B4J2D9

P49908 P22352

Genistein 
sulfate

Thyroxine
3β,7α-dihydroxy-5-cholestenoate
Tryptophan betaine

G1

G5

G3G2

G4

G6

-4 -2 0 2 4 6

C

P08294

2

A B

XG40 XG42 XG43 XG44 XG45 XG46

XG20 XG21 XG22 XG23 XG24 XG25

Se
ve

re
N

on
-

Se
ve

re

3
4
5

1-palmitoyl-GPC
1-arachidonoyl-GPC

1-(1-enyl-stearoyl)-2-linoleoyl-GPE
1-(1-enyl-palmitoyl)-2-oleoyl-GPE

1-stearoyl-2-arachidonoyl-GPC
1-(1-enyl-stearoyl)-2-arachidonoyl-GPE

1-oleoyl-2-docosahexaenoyl-GPC
1-(1-enyl-palmitoyl)-2-oleoyl-GPC

1-palmitoyl-GPE
1-palmitoyl-2-palmitoleoyl-GPC

1-myristoyl-2-palmitoyl-GPC
1-palmitoyl-2-oleoyl-GPC
1-palmitoyl-2-oleoyl-GPI

Figure 9. The Multi-channel Fmaps and important FPs in distinguishing COVID-19 severe and non-severe cases by AggMapNet classification of the multi-
omics COV-S dataset. (A) the regular grid positions for the 1486 multi-omics feature points (649 proteins and 847 metabolites) to form the multi-channel
Fmaps, the size of the grid is 39x39, each different color in the grid stands for one cluster group or one channel in the Fmaps. Cluster 1 and 2 are major
proteins, and Clusters 3, 4 and 5 are major metabolites. (B) the transformed multi-channel Fmaps for the six non-severe and six severe cases, the XG43–
XG46 and XG20–XG25 are the four severe six non-severe cases in the independent test cohort, respectively. (C) the top-50 feature points (39 metabolites
and 11 proteins) were embedded based on the correlation distance using UMAP, they can be grouped into six groups, G1–G5 are the metabolites (except
for the Q9NPH3 in G2), and G6 is the proteins (except for the Genistein sulfate), their scatter size stands for the importance score. Metabolites in G1 are
the sphingomyelins (SMs), in G2 are the phospholipid metabolites, including glycerophosphatidylcholines (GPCs), glycerophosphatidylinositols (GPIs),
glycerophosphatidylethanolamines (GPEs). (D) the list card for the top-10 ranked feature points with their importance scores, and the two-sided Wilcoxon
rank-sum test (with Bonferroni correction) P-value is used for the significant test among the severe and non-severe patients. (E) the detail information card
for the proteins in G6.
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tions or severity predictions and may potentially facilitate
biomarker discovery. These important biomarkers are dis-
covered only based on 31 patients (18 non-severe and 13 se-
vere, many of the signatures by the Wilcoxon rank-sum test
is not statistic significant in the distinguish of severe and
non-severe (P value < 0.05) due to limited number of sam-
ples, but AggMapNet model explanation is still able to iden-
tify these important biomarkers, suggesting the practicality
and effectiveness of the method in the case of low-data sam-
ples with high-dimension.

CONCLUSION

Robust learning of Biomedical data is vital for disease di-
agnosis, biomarker discovery, and biological mechanism in-
vestigations (1,56). The relevant learning tasks are hindered
by the high dimensional, variational (biological and tech-
nical), and unordered nature of BioHULM data (57). An-
other obstacle is the low-sample sizes of typical biomedi-
cal investigations and the corresponding learning tasks (1).
These problems confound the process of statistical infer-
ence and subject learning outcomes to random chances
(58), which may lead to false model explanations, false dis-
coveries and mask the identification of genuine biological
variations (58). Interpretable DL algorithms provide ad-
ditional means for assessing learning outcomes and sup-
port informed clinical decisions and biomarker discover-
ies (9,10). The new self-supervised AggMap algorithm re-
structures and aggregates unordered data into structured
multi-channel Fmaps to expose the intrinsic data clusters,
enabling enhanced DL by multi-channel CNNs. Together
with unsupervised AggMap, the multi-channel CNN-based
AggMapNet models showed enhanced and robust ability
in learning both low-sample and higher-sample omics data,
which outperformed the SOTA ML models in most of 18
low-sample omics benchmark tasks, suggesting that Ag-
gMapNet is a valuable complement of ML methods for
omics-based learning. The use of perturbation-based inter-
pretation algorithm facilitates the assessment of important
features of AggMapNet learning. The revealed important
features are highly consistent with the literature-reported
disease-related markers. Unsupervised AggMap and super-
vised AggMapNet, together with other emerging DL meth-
ods, collectively facilitate enhanced and robust learning of
complex omics data for clinical diagnosis and biomedical
investigations.
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21. Müllner,D. (2013) fastcluster: Fast hierarchical, agglomerative
clustering routines for R and Python. J. Stat. Softw., 53, 1–18.

22. Jonker,R. and Volgenant,A. (1987) A shortest augmenting path
algorithm for dense and sparse linear assignment problems.
Computing, 38, 325–340.

23. Noroozi,M. and Favaro,P. (2016) Unsupervised learning of visual
representations by solving jigsaw puzzles. Eur. Conf. Comput. Vis.,
69–84.

24. LeCun,Y. (1998) The MNIST database of handwritten digits.
25. McInnes,L., Healy,J. and Melville,J. (2018) Umap: uniform manifold

approximation and projection for dimension reduction. arXiv doi:
https://arxiv.org/abs/1802.03426, 18 September 2020, preprint: not
peer reviewed.

26. Kobak,D. and Linderman,G.C. (2021) Initialization is critical for
preserving global data structure in both t-SNE and UMAP. Nat.
Biotechnol., 39, 156–157.

27. Belkin,M. and Niyogi,P. (2001) Laplacian eigenmaps and spectral
techniques for embedding and clustering. Nips, 14, 585–591.

28. Shen,W.X., Zeng,X., Zhu,F., li Wang,Y., Qin,C., Tan,Y., Jiang,Y.Y.
and Chen,Y.Z. (2021) Out-of-the-box deep learning prediction of
pharmaceutical properties by broadly learned knowledge-based
molecular representations. Nat. Mach. Intell., 3, 334–334.

29. Dosovitskiy,A., Beyer,L., Kolesnikov,A., Weissenborn,D., Zhai,X.,
Unterthiner,T., Dehghani,M., Minderer,M., Heigold,G. and Gelly,S.
(2020) An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv doi: https://arxiv.org/abs/2010.11929, 03
June 2021, preprint: not peer reviewed.

30. Szegedy,C., Liu,W., Jia,Y., Sermanet,P., Reed,S., Anguelov,D.,
Erhan,D., Vanhoucke,V. and Rabinovich,A. (2015) Going deeper
with convolutions. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). pp.1–9.

31. Peng,C., Zhang,X., Yu,G., Luo,G. and Sun,J. (2017) Large kernel
matters–improve semantic segmentation by global convolutional
network. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). pp.4353–4361.

32. Ribeiro,M.T., Singh,S. and Guestrin,C. (2016) “Why should i trust
you?” Explaining the predictions of any classifier. In: Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. pp.1135–1144.

33. Lundberg,S.M. and Lee,S.-I. (2017) A unified approach to
interpreting model predictions. In: Proceedings of the 31st
International Conference on Neural Information Processing Systems.
pp.4768–4777.

34. Kumar,I.E., Venkatasubramanian,S., Scheidegger,C. and Friedler,S.
(2020) Problems with Shapley-value-based explanations as feature
importance measures. In: Proceedings of the 37th International
Conference on Machine Learning (PMLR). pp.5491–5500.
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